Normalized defining polynomial
\( x^{16} - 4 x^{15} - 16 x^{14} + 52 x^{13} + 156 x^{12} - 240 x^{11} - 908 x^{10} + 288 x^{9} + 2367 x^{8} + 1912 x^{7} - 1100 x^{6} - 7848 x^{5} - 2996 x^{4} + 6780 x^{3} + 3936 x^{2} - 100 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2817928042905600000000=2^{40}\cdot 3^{8}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{101905} a^{14} + \frac{3830}{20381} a^{13} + \frac{5674}{20381} a^{12} + \frac{20757}{101905} a^{11} - \frac{41256}{101905} a^{10} - \frac{19787}{101905} a^{9} + \frac{31263}{101905} a^{8} - \frac{24132}{101905} a^{7} + \frac{29247}{101905} a^{6} + \frac{17763}{101905} a^{5} + \frac{2094}{101905} a^{4} + \frac{28606}{101905} a^{3} + \frac{34362}{101905} a^{2} - \frac{861}{101905} a - \frac{27381}{101905}$, $\frac{1}{10743048352558333947265} a^{15} - \frac{4324797845099716}{2148609670511666789453} a^{14} + \frac{48045191078213129626}{2148609670511666789453} a^{13} + \frac{1422678082520352171802}{10743048352558333947265} a^{12} - \frac{896130866551442329276}{10743048352558333947265} a^{11} - \frac{3790519902258591630842}{10743048352558333947265} a^{10} + \frac{3721746608258173171893}{10743048352558333947265} a^{9} + \frac{1223558218542340033663}{10743048352558333947265} a^{8} - \frac{3848135687842963186928}{10743048352558333947265} a^{7} + \frac{162933505678071591241}{826388334812179534405} a^{6} - \frac{2530003774520026519866}{10743048352558333947265} a^{5} - \frac{25715431657466764737}{290352658177252268845} a^{4} + \frac{53411272865449672243}{120708408455711617385} a^{3} + \frac{102999862438229655672}{290352658177252268845} a^{2} - \frac{2163503795838640631151}{10743048352558333947265} a - \frac{394971228242274604788}{2148609670511666789453}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{47996495270768184306}{10743048352558333947265} a^{15} + \frac{195701567381154120851}{10743048352558333947265} a^{14} + \frac{156527762504618615027}{2148609670511666789453} a^{13} - \frac{2651427262375547107212}{10743048352558333947265} a^{12} - \frac{7812563345787085290057}{10743048352558333947265} a^{11} + \frac{13170990326214308888316}{10743048352558333947265} a^{10} + \frac{9519509763107411495945}{2148609670511666789453} a^{9} - \frac{3944382281832475696950}{2148609670511666789453} a^{8} - \frac{136567831280932268718469}{10743048352558333947265} a^{7} - \frac{7236395957710651399572}{826388334812179534405} a^{6} + \frac{98986936844542044814219}{10743048352558333947265} a^{5} + \frac{12040037827571813483594}{290352658177252268845} a^{4} + \frac{173101083111823837943449}{10743048352558333947265} a^{3} - \frac{12309705773149514577736}{290352658177252268845} a^{2} - \frac{56268974577381498226484}{2148609670511666789453} a + \frac{13890687315272607294084}{10743048352558333947265} \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31102.0401588 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $Q_8 : C_2$ |
| Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |