Normalized defining polynomial
\( x^{16} - 8 x^{15} + 172 x^{14} - 1064 x^{13} + 12790 x^{12} - 63272 x^{11} + 545756 x^{10} - 2173192 x^{9} + 14717223 x^{8} - 46483976 x^{7} + 257685716 x^{6} - 618838472 x^{5} + 2865167258 x^{4} - 4749147848 x^{3} + 18507674124 x^{2} - 16229095208 x + 53156046238 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2801731803266966736034164664958976=2^{48}\cdot 3^{8}\cdot 79^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3792=2^{4}\cdot 3\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3792}(1,·)$, $\chi_{3792}(2053,·)$, $\chi_{3792}(1739,·)$, $\chi_{3792}(3791,·)$, $\chi_{3792}(1105,·)$, $\chi_{3792}(791,·)$, $\chi_{3792}(2843,·)$, $\chi_{3792}(157,·)$, $\chi_{3792}(1895,·)$, $\chi_{3792}(1897,·)$, $\chi_{3792}(2845,·)$, $\chi_{3792}(3635,·)$, $\chi_{3792}(947,·)$, $\chi_{3792}(949,·)$, $\chi_{3792}(3001,·)$, $\chi_{3792}(2687,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{105453688754156979387529} a^{14} - \frac{1}{15064812679165282769647} a^{13} + \frac{42465322670569725299880}{105453688754156979387529} a^{12} - \frac{43884558515104393024131}{105453688754156979387529} a^{11} + \frac{6734475118775541366657}{105453688754156979387529} a^{10} - \frac{18060781303996361866524}{105453688754156979387529} a^{9} - \frac{32179725803635929822724}{105453688754156979387529} a^{8} - \frac{4962739302758924857151}{15064812679165282769647} a^{7} + \frac{35041414520391094879823}{105453688754156979387529} a^{6} + \frac{43704452030818851991366}{105453688754156979387529} a^{5} + \frac{14818825739392650695126}{105453688754156979387529} a^{4} + \frac{3261344119427219016314}{105453688754156979387529} a^{3} + \frac{48691056872438970284041}{105453688754156979387529} a^{2} + \frac{39601038424392084567764}{105453688754156979387529} a - \frac{26222377316423162665104}{105453688754156979387529}$, $\frac{1}{5990360167346828462453196749929} a^{15} + \frac{28402793}{5990360167346828462453196749929} a^{14} + \frac{1097195372542790308217597873947}{5990360167346828462453196749929} a^{13} - \frac{418636535696343377593826545580}{855765738192404066064742392847} a^{12} + \frac{894871908561391148788070391607}{5990360167346828462453196749929} a^{11} + \frac{969545769234563423410653673470}{5990360167346828462453196749929} a^{10} + \frac{146481771821602609121413980}{913303882809396015010397431} a^{9} + \frac{2228428873046604716916926608650}{5990360167346828462453196749929} a^{8} - \frac{1084484184469958865798378073449}{5990360167346828462453196749929} a^{7} + \frac{179644048550047281795429083672}{855765738192404066064742392847} a^{6} - \frac{1149330975260139766715438191860}{5990360167346828462453196749929} a^{5} - \frac{165581695784481980034555301103}{5990360167346828462453196749929} a^{4} - \frac{2878926523950870631264871684314}{5990360167346828462453196749929} a^{3} - \frac{144127978803646070011133133199}{5990360167346828462453196749929} a^{2} + \frac{719272740442883592566537383598}{5990360167346828462453196749929} a + \frac{2363046213662844409113596145410}{5990360167346828462453196749929}$
Class group and class number
$C_{2}\times C_{4}\times C_{80}\times C_{4080}$, which has order $2611200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $79$ | 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |