Normalized defining polynomial
\( x^{16} - 4 x^{14} - 22 x^{12} - 4 x^{10} + 667 x^{8} - 1484 x^{6} + 3038 x^{4} - 2744 x^{2} + 2401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(277129020662429515776=2^{44}\cdot 3^{8}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2} + \frac{1}{6}$, $\frac{1}{6} a^{9} - \frac{1}{3} a^{7} - \frac{1}{6} a^{5} + \frac{1}{3} a^{3} + \frac{1}{6} a$, $\frac{1}{84} a^{10} - \frac{1}{12} a^{9} + \frac{1}{28} a^{8} - \frac{1}{3} a^{7} - \frac{29}{84} a^{6} + \frac{1}{12} a^{5} - \frac{13}{28} a^{4} + \frac{1}{3} a^{3} + \frac{23}{84} a^{2} + \frac{5}{12} a - \frac{1}{12}$, $\frac{1}{84} a^{11} - \frac{1}{21} a^{9} - \frac{1}{12} a^{8} + \frac{9}{28} a^{7} - \frac{1}{3} a^{6} - \frac{8}{21} a^{5} + \frac{1}{12} a^{4} - \frac{11}{28} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{5}{12}$, $\frac{1}{588} a^{12} + \frac{1}{196} a^{10} + \frac{4}{49} a^{8} + \frac{185}{588} a^{6} + \frac{33}{98} a^{4} - \frac{1}{4} a^{2} - \frac{1}{12}$, $\frac{1}{588} a^{13} + \frac{1}{196} a^{11} + \frac{4}{49} a^{9} + \frac{185}{588} a^{7} + \frac{33}{98} a^{5} - \frac{1}{4} a^{3} - \frac{1}{12} a$, $\frac{1}{939983268} a^{14} - \frac{280555}{469991634} a^{12} + \frac{1248081}{313327756} a^{10} - \frac{14472835}{313327756} a^{8} - \frac{26764091}{313327756} a^{6} - \frac{62960125}{134283324} a^{4} - \frac{147671}{4795833} a^{2} + \frac{53031}{913492}$, $\frac{1}{939983268} a^{15} - \frac{280555}{469991634} a^{13} + \frac{1248081}{313327756} a^{11} - \frac{14472835}{313327756} a^{9} - \frac{26764091}{313327756} a^{7} - \frac{62960125}{134283324} a^{5} - \frac{147671}{4795833} a^{3} + \frac{53031}{913492} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{261199}{234995817} a^{14} - \frac{1485417}{313327756} a^{12} - \frac{8146501}{313327756} a^{10} + \frac{1109229}{156663878} a^{8} + \frac{760223227}{939983268} a^{6} - \frac{8417368}{4795833} a^{4} + \frac{6355081}{2740476} a^{2} - \frac{4983617}{2740476} \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28493.4786755 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^3$ (as 16T20):
| A solvable group of order 32 |
| The 17 conjugacy class representatives for $(C_2 \times Q_8):C_2$ |
| Character table for $(C_2 \times Q_8):C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |