Normalized defining polynomial
\( x^{16} - 6 x^{15} - 19 x^{14} + 2442 x^{13} - 15576 x^{12} - 644417 x^{11} + 18522881 x^{10} - 304305287 x^{9} + 3194261138 x^{8} - 23486633086 x^{7} + 87603516131 x^{6} + 237616125806 x^{5} - 2336821044932 x^{4} - 142328996665 x^{3} + 15997195291737 x^{2} + 22845585920160 x + 36644678113511 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2766826907141591867309101193151875470463173481=41^{15}\cdot 59^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $692.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{5}{11} a^{13} - \frac{4}{11} a^{12} - \frac{5}{11} a^{11} + \frac{3}{11} a^{10} - \frac{2}{11} a^{9} - \frac{5}{11} a^{8} - \frac{1}{11} a^{7} - \frac{2}{11} a^{5} - \frac{3}{11} a^{4} + \frac{5}{11} a^{3} + \frac{3}{11} a + \frac{3}{11}$, $\frac{1}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a^{15} - \frac{134371241648470867162252490928590238806804340326283622489941014934422786937957987015304247356872457787}{7842104157652692351025800649791334256444490990238980918295104729269690400498059959454454169899291060965} a^{14} - \frac{18770644015850099279635536371706562900847265628085982890281139355655134366596607383904161378801995078897}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a^{13} - \frac{41666189929798361046470207522152895667202977393104381386513091394822432840520547137207163151823584978246}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a^{12} - \frac{467608313175879992167759520727912883937409677324875351821267366174013448665721591502044130647871540088}{1568420831530538470205160129958266851288898198047796183659020945853938080099611991890890833979858212193} a^{11} + \frac{37074394809575486500520957522954841117402747786115397149008366732965732251028647252790931120974268324373}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a^{10} - \frac{39624092589159321315071166226274551077032832706447725850507850859234774188586492190023044367296621334962}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a^{9} + \frac{6927300219759257784635686665254341091839499384322126526063780958542548056079848354360137984332772473723}{17252629146835923172256761429540935364177880178525758020249230404393318881095731910799799173778440334123} a^{8} + \frac{4659919797491229669104774478091080806386746213468976292718020234479554772635140734360236318326442026788}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a^{7} - \frac{9168237221072650841739188413947553020569461729806455495940916997546414628397544667757829341657963660849}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a^{6} - \frac{6476161996418767455218738691234512671379064036691652065867195653366502858179752422042846543433005784714}{17252629146835923172256761429540935364177880178525758020249230404393318881095731910799799173778440334123} a^{5} - \frac{36276744725086928847210688439647231539580147421001761540458664376978809506602653146231449975088014353424}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a^{4} - \frac{4991663855247653731578744827183096605824855708474682553745445221702978045255601822661181370768552379563}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a^{3} + \frac{23573285547235348991829680242126536280011124611684062453681570987330212118668065843980143220401685934363}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a^{2} - \frac{33922827150542665638837008687202344026121429852499429178994412313366959984077786981592945592871138133491}{86263145734179615861283807147704676820889400892628790101246152021966594405478659553998995868892201670615} a + \frac{3180207195751861663038409888641320047093381053574142003682981413734165960628629809803746230296837508157}{6635626594936893527791062088284975140068415453279137700095857847843584185036819965692230451453246282355}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{16}$, which has order $256$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65918524003600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-2419}) \), 4.0.239914001.1, 8.0.2359907842908948041.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $59$ | 59.8.6.2 | $x^{8} + 177 x^{4} + 13924$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 59.8.6.2 | $x^{8} + 177 x^{4} + 13924$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |