Normalized defining polynomial
\( x^{16} - 4 x^{15} + 69 x^{14} - 224 x^{13} - 17038 x^{12} - 109940 x^{11} + 310090 x^{10} + 15872553 x^{9} + 111233592 x^{8} + 352966659 x^{7} + 472182745 x^{6} - 4522699120 x^{5} - 4193139084 x^{4} + 98354585839 x^{3} + 353322548342 x^{2} + 406935393270 x + 387255219875 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2766826907141591867309101193151875470463173481=41^{15}\cdot 59^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $692.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{59} a^{8} - \frac{2}{59} a^{7} + \frac{3}{59} a^{6} + \frac{12}{59} a^{5} + \frac{26}{59} a^{4} - \frac{25}{59} a^{3} + \frac{29}{59} a^{2} - \frac{22}{59} a - \frac{18}{59}$, $\frac{1}{59} a^{9} - \frac{1}{59} a^{7} + \frac{18}{59} a^{6} - \frac{9}{59} a^{5} + \frac{27}{59} a^{4} - \frac{21}{59} a^{3} - \frac{23}{59} a^{2} - \frac{3}{59} a + \frac{23}{59}$, $\frac{1}{59} a^{10} + \frac{16}{59} a^{7} - \frac{6}{59} a^{6} - \frac{20}{59} a^{5} + \frac{5}{59} a^{4} + \frac{11}{59} a^{3} + \frac{26}{59} a^{2} + \frac{1}{59} a - \frac{18}{59}$, $\frac{1}{59} a^{11} + \frac{26}{59} a^{7} - \frac{9}{59} a^{6} - \frac{10}{59} a^{5} + \frac{8}{59} a^{4} + \frac{13}{59} a^{3} + \frac{9}{59} a^{2} - \frac{20}{59} a - \frac{7}{59}$, $\frac{1}{295} a^{12} + \frac{2}{295} a^{11} - \frac{1}{295} a^{8} - \frac{21}{295} a^{7} - \frac{10}{59} a^{6} + \frac{18}{295} a^{5} + \frac{94}{295} a^{4} + \frac{24}{59} a^{3} - \frac{136}{295} a^{2} - \frac{102}{295} a$, $\frac{1}{295} a^{13} + \frac{1}{295} a^{11} - \frac{1}{295} a^{9} + \frac{1}{295} a^{8} + \frac{82}{295} a^{7} + \frac{133}{295} a^{6} - \frac{47}{295} a^{5} - \frac{98}{295} a^{4} + \frac{74}{295} a^{3} - \frac{18}{59} a^{2} - \frac{41}{295} a - \frac{20}{59}$, $\frac{1}{295} a^{14} - \frac{2}{295} a^{11} - \frac{1}{295} a^{10} + \frac{1}{295} a^{9} - \frac{2}{295} a^{8} + \frac{29}{295} a^{7} + \frac{43}{295} a^{6} + \frac{44}{295} a^{5} + \frac{26}{59} a^{4} + \frac{29}{59} a^{3} - \frac{2}{59} a^{2} + \frac{102}{295} a + \frac{11}{59}$, $\frac{1}{435827362128768273216130244080850909109993828744817534779661766480171100535} a^{15} - \frac{233783159556886832538981824458703855020868318879741216439484868964156248}{435827362128768273216130244080850909109993828744817534779661766480171100535} a^{14} + \frac{176559521929847801230395714427866266551768181024289623920855677789994711}{435827362128768273216130244080850909109993828744817534779661766480171100535} a^{13} - \frac{60695027786450510811270578220643987744483392324840631645643764564812710}{87165472425753654643226048816170181821998765748963506955932353296034220107} a^{12} + \frac{9025163654295131730007969460747879338435121705028577209922185451470105}{87165472425753654643226048816170181821998765748963506955932353296034220107} a^{11} - \frac{820553642901454615991876272694493344775871641190049367598798730381384851}{435827362128768273216130244080850909109993828744817534779661766480171100535} a^{10} - \frac{2671359983542356052448678552604582454529949107027394211134105516538662886}{435827362128768273216130244080850909109993828744817534779661766480171100535} a^{9} + \frac{3323975951444086958289468516267905381097122316831084296801568549894372214}{435827362128768273216130244080850909109993828744817534779661766480171100535} a^{8} - \frac{182780402967159355387240466599928545457696949167563875343783878517869579229}{435827362128768273216130244080850909109993828744817534779661766480171100535} a^{7} + \frac{85333982778137856334675607129035028367346213810754695704220221855292595728}{435827362128768273216130244080850909109993828744817534779661766480171100535} a^{6} - \frac{208265962361148124526476712796714713732038752366192578139701656064226147583}{435827362128768273216130244080850909109993828744817534779661766480171100535} a^{5} + \frac{23949440135562003987052868520347503094778921712791827550314205210392409462}{87165472425753654643226048816170181821998765748963506955932353296034220107} a^{4} + \frac{72630464399608509013816991632636307348336021862455207806282004601121752164}{435827362128768273216130244080850909109993828744817534779661766480171100535} a^{3} + \frac{4054454268032904428578751848483319173721836444822994407879617268714110529}{87165472425753654643226048816170181821998765748963506955932353296034220107} a^{2} - \frac{114027293545436753363134813708864879853808978180870548123302842438409366681}{435827362128768273216130244080850909109993828744817534779661766480171100535} a + \frac{8210883344537386666501431904690813153585036982460897455590623259055159483}{87165472425753654643226048816170181821998765748963506955932353296034220107}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{16}$, which has order $256$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 152478478179000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-2419}) \), 4.0.239914001.1, 8.0.2359907842908948041.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | $16$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $59$ | 59.8.6.2 | $x^{8} + 177 x^{4} + 13924$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 59.8.6.2 | $x^{8} + 177 x^{4} + 13924$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |