Properties

Label 16.0.27532918184214528.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{28}\cdot 3^{12}\cdot 193$
Root discriminant $10.65$
Ramified primes $2, 3, 193$
Class number $1$
Class group Trivial
Galois group 16T1461

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, 2, 12, -18, -8, 58, -88, 70, -24, -6, 8, 6, -12, 10, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 10*x^14 - 12*x^13 + 6*x^12 + 8*x^11 - 6*x^10 - 24*x^9 + 70*x^8 - 88*x^7 + 58*x^6 - 8*x^5 - 18*x^4 + 12*x^3 + 2*x^2 - 4*x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 10*x^14 - 12*x^13 + 6*x^12 + 8*x^11 - 6*x^10 - 24*x^9 + 70*x^8 - 88*x^7 + 58*x^6 - 8*x^5 - 18*x^4 + 12*x^3 + 2*x^2 - 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 10 x^{14} - 12 x^{13} + 6 x^{12} + 8 x^{11} - 6 x^{10} - 24 x^{9} + 70 x^{8} - 88 x^{7} + 58 x^{6} - 8 x^{5} - 18 x^{4} + 12 x^{3} + 2 x^{2} - 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(27532918184214528=2^{28}\cdot 3^{12}\cdot 193\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $10.65$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 193$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{278} a^{15} + \frac{9}{278} a^{14} - \frac{6}{139} a^{13} - \frac{29}{278} a^{12} + \frac{23}{139} a^{11} + \frac{25}{139} a^{10} - \frac{51}{278} a^{9} + \frac{4}{139} a^{8} + \frac{35}{278} a^{7} + \frac{89}{278} a^{6} - \frac{18}{139} a^{5} - \frac{59}{278} a^{4} - \frac{45}{139} a^{3} - \frac{23}{139} a^{2} + \frac{99}{278} a + \frac{16}{139}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{178}{139} a^{15} + \frac{622}{139} a^{14} - \frac{1478}{139} a^{13} + \frac{2957}{278} a^{12} - \frac{543}{139} a^{11} - \frac{1394}{139} a^{10} + \frac{321}{139} a^{9} + \frac{4136}{139} a^{8} - \frac{10122}{139} a^{7} + \frac{11263}{139} a^{6} - \frac{6380}{139} a^{5} + \frac{15}{278} a^{4} + \frac{2537}{139} a^{3} - \frac{1125}{139} a^{2} - \frac{525}{139} a + \frac{420}{139} \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 181.512952272 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1461:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 74 conjugacy class representatives for t16n1461 are not computed
Character table for t16n1461 is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), 4.0.432.1 x2, 4.2.1728.1 x2, \(\Q(\zeta_{12})\), 8.0.2985984.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$193$$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 5$$1$$1$$0$Trivial$[\ ]$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.1.2$x^{2} + 965$$2$$1$$1$$C_2$$[\ ]_{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$