Normalized defining polynomial
\( x^{16} - x^{15} - 12 x^{14} - 95 x^{13} + 111 x^{12} - 4895 x^{11} + 17972 x^{10} + 57043 x^{9} + 267861 x^{8} - 1893360 x^{7} + 9041980 x^{6} - 31402800 x^{5} + 71416400 x^{4} - 255944000 x^{3} + 744952000 x^{2} - 2109120000 x + 4569760000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(275103767122062920083301025390625=5^{12}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{10} - \frac{1}{20} a^{9} + \frac{2}{5} a^{8} + \frac{1}{4} a^{7} - \frac{9}{20} a^{6} + \frac{1}{4} a^{5} - \frac{2}{5} a^{4} + \frac{3}{20} a^{3} + \frac{1}{20} a^{2}$, $\frac{1}{40} a^{11} - \frac{1}{40} a^{10} + \frac{1}{5} a^{9} + \frac{1}{8} a^{8} - \frac{9}{40} a^{7} + \frac{1}{8} a^{6} - \frac{1}{5} a^{5} - \frac{17}{40} a^{4} - \frac{19}{40} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4800} a^{12} - \frac{17}{1600} a^{11} + \frac{19}{2400} a^{10} + \frac{101}{960} a^{9} + \frac{61}{4800} a^{8} - \frac{3}{320} a^{7} + \frac{187}{800} a^{6} + \frac{43}{4800} a^{5} - \frac{363}{1600} a^{4} + \frac{239}{480} a^{3} - \frac{61}{240} a^{2} + \frac{11}{24} a + \frac{1}{12}$, $\frac{1}{25832356651201776000} a^{13} + \frac{1209880681387039}{25832356651201776000} a^{12} - \frac{617104516376264}{201815286337513875} a^{11} + \frac{221968172765369}{90639847898953600} a^{10} + \frac{5984886634485883391}{25832356651201776000} a^{9} + \frac{2307191353155434729}{5166471330240355200} a^{8} - \frac{168179361912102557}{1076348193800074000} a^{7} - \frac{12604816952306315777}{25832356651201776000} a^{6} - \frac{7916970707311069499}{25832356651201776000} a^{5} + \frac{634916044084268113}{1291617832560088800} a^{4} + \frac{1639198588347403}{11329980987369200} a^{3} + \frac{1006688987969957}{4967760894461880} a^{2} + \frac{315787211421547}{8072611453500555} a + \frac{78421667394253}{496776089446188}$, $\frac{1}{671641272931246176000} a^{14} - \frac{1}{671641272931246176000} a^{13} - \frac{3375290291057329}{83955159116405772000} a^{12} - \frac{190222647157689259}{26865650917249847040} a^{11} + \frac{5106596369212193551}{671641272931246176000} a^{10} + \frac{18993495674726718401}{134328254586249235200} a^{9} - \frac{1994577803329462991}{5247197444775360750} a^{8} - \frac{112699460892911156057}{671641272931246176000} a^{7} - \frac{205068916807716320779}{671641272931246176000} a^{6} + \frac{11363929408383551699}{33582063646562308800} a^{5} - \frac{481920795994955387}{2098878977910144300} a^{4} + \frac{781083111139567}{8072611453500555} a^{3} - \frac{303906921725227919}{839551591164057720} a^{2} - \frac{5334894378001001}{12916178325600888} a + \frac{51233533064063}{248388044723094}$, $\frac{1}{87313365481062002880000} a^{15} - \frac{1}{87313365481062002880000} a^{14} - \frac{1}{7276113790088500240000} a^{13} - \frac{228814159102715513}{5820891032070800192000} a^{12} + \frac{157525168495977690311}{87313365481062002880000} a^{11} - \frac{15578994346753284659}{17462673096212400576000} a^{10} + \frac{3976151590970836237943}{21828341370265500720000} a^{9} - \frac{32902616730361113785557}{87313365481062002880000} a^{8} - \frac{13778903697627639053539}{87313365481062002880000} a^{7} - \frac{128493160811119736019}{363805689504425012000} a^{6} + \frac{9153364469593613617}{76590671474615792000} a^{5} - \frac{13905882980303393561}{33582063646562308800} a^{4} + \frac{3987409600960297427}{14552227580177000480} a^{3} + \frac{30763109599297097}{839551591164057720} a^{2} + \frac{28924347276583}{64580891628004440} a - \frac{11096180179613}{248388044723094}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{20}\times C_{40}$, which has order $6400$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{222774177}{861078555040059200} a^{15} - \frac{23836836939}{11194021215520769600} a^{14} + \frac{222774177}{699626325970048100} a^{13} + \frac{111831229371}{2238804243104153920} a^{12} + \frac{2913217912629}{11194021215520769600} a^{11} + \frac{3342280977531}{2238804243104153920} a^{10} + \frac{9047527650501}{1399252651940096200} a^{9} - \frac{362119201939323}{11194021215520769600} a^{8} - \frac{2730735802299161}{11194021215520769600} a^{7} - \frac{249070663627257}{559701060776038480} a^{6} + \frac{11142496011009}{13992526519400962} a^{5} - \frac{102769960559463}{27985053038801924} a^{4} + \frac{5237420901270}{538174096900037} a^{3} - \frac{9013492918088759}{139925265194009620} a^{2} + \frac{2027245010700}{41398007453849} a + \frac{3764883591300}{41398007453849} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6501070.6915 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |