Normalized defining polynomial
\( x^{16} - x^{15} - 37 x^{14} + 31 x^{13} + 563 x^{12} - 3976 x^{11} + 4075 x^{10} + 76105 x^{9} - 156054 x^{8} - 48180 x^{7} + 3496685 x^{6} - 7936374 x^{5} + 9489133 x^{4} + 64628944 x^{3} - 3939082 x^{2} + 368350701 x + 906892741 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(275103767122062920083301025390625=5^{12}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{2} - \frac{2}{5}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{2}{5} a^{7} + \frac{3}{10} a^{6} + \frac{1}{10} a^{5} - \frac{2}{5} a^{4} + \frac{3}{10} a^{2} - \frac{2}{5} a + \frac{3}{10}$, $\frac{1}{190} a^{11} - \frac{1}{190} a^{10} - \frac{9}{190} a^{9} + \frac{4}{95} a^{8} - \frac{63}{190} a^{7} + \frac{69}{190} a^{6} - \frac{43}{95} a^{5} + \frac{36}{95} a^{4} + \frac{3}{10} a^{3} + \frac{41}{95} a^{2} + \frac{7}{38} a + \frac{4}{19}$, $\frac{1}{190} a^{12} + \frac{9}{190} a^{10} + \frac{9}{95} a^{9} + \frac{1}{95} a^{8} - \frac{16}{95} a^{7} + \frac{1}{95} a^{6} - \frac{33}{190} a^{5} + \frac{91}{190} a^{4} + \frac{5}{38} a^{3} - \frac{46}{95} a^{2} + \frac{37}{190} a - \frac{93}{190}$, $\frac{1}{190} a^{13} + \frac{4}{95} a^{10} - \frac{6}{95} a^{9} - \frac{9}{190} a^{8} - \frac{77}{190} a^{7} + \frac{11}{190} a^{6} + \frac{43}{95} a^{5} - \frac{3}{38} a^{4} + \frac{41}{190} a^{3} + \frac{39}{95} a^{2} + \frac{43}{95} a + \frac{77}{190}$, $\frac{1}{570} a^{14} + \frac{1}{570} a^{13} - \frac{1}{570} a^{12} - \frac{1}{114} a^{10} - \frac{1}{114} a^{9} - \frac{1}{15} a^{8} - \frac{88}{285} a^{7} - \frac{13}{190} a^{6} + \frac{7}{57} a^{5} + \frac{271}{570} a^{4} + \frac{22}{95} a^{3} + \frac{28}{285} a^{2} + \frac{94}{285} a + \frac{23}{57}$, $\frac{1}{31017649528058194832756393045039622111459942475939350} a^{15} + \frac{12126539515665441371314989745237880672963987605441}{31017649528058194832756393045039622111459942475939350} a^{14} - \frac{5292651268192318396593582281264977911846320632607}{6203529905611638966551278609007924422291988495187870} a^{13} + \frac{12725272514369845920476418503761089111955313630337}{10339216509352731610918797681679874037153314158646450} a^{12} + \frac{12659415460578474428161387984274351448564432196367}{6203529905611638966551278609007924422291988495187870} a^{11} - \frac{765810187914131887057760706309179336687769302392031}{31017649528058194832756393045039622111459942475939350} a^{10} + \frac{1505550816877192219319971771388650602713688970090813}{31017649528058194832756393045039622111459942475939350} a^{9} - \frac{2887078228829961117701642536055430635655611833102589}{31017649528058194832756393045039622111459942475939350} a^{8} - \frac{659225751599938072720756629071862676657964613390789}{10339216509352731610918797681679874037153314158646450} a^{7} + \frac{11072672656788157473529032258832693834729270090796581}{31017649528058194832756393045039622111459942475939350} a^{6} + \frac{12159452413078108124864558170841876859540645339411247}{31017649528058194832756393045039622111459942475939350} a^{5} + \frac{589240558552103402849306743675941479958511393402769}{2067843301870546322183759536335974807430662831729290} a^{4} + \frac{3170189383151721836835482547416525283666046544743883}{31017649528058194832756393045039622111459942475939350} a^{3} - \frac{2789909021254002875687901574941954883155523905818501}{6203529905611638966551278609007924422291988495187870} a^{2} - \frac{15158203227113995405347462859383869677448208284579077}{31017649528058194832756393045039622111459942475939350} a - \frac{628868115610441897820517721445317777330098037258728}{5169608254676365805459398840839937018576657079323225}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{40}$, which has order $2560$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6501070.6915 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |