Normalized defining polynomial
\( x^{16} - x^{15} + 98 x^{14} - 90 x^{13} + 4761 x^{12} - 4435 x^{11} + 130737 x^{10} - 30422 x^{9} + 2024471 x^{8} + 1410010 x^{7} + 20731015 x^{6} + 33449130 x^{5} + 101899505 x^{4} + 367664500 x^{3} + 495143825 x^{2} + 212747625 x + 730770125 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(275103767122062920083301025390625=5^{12}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{8} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{25} a^{14} - \frac{1}{25} a^{13} - \frac{2}{25} a^{12} + \frac{2}{5} a^{11} + \frac{11}{25} a^{10} - \frac{2}{5} a^{9} + \frac{12}{25} a^{8} + \frac{3}{25} a^{7} - \frac{4}{25} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5652105160071573431180470987933000887356906145958495910936613275} a^{15} + \frac{21286288161323872104418119782819159386058056853269518281782611}{1130421032014314686236094197586600177471381229191699182187322655} a^{14} + \frac{49853157442328039291311460103457032818695623925206260623381757}{5652105160071573431180470987933000887356906145958495910936613275} a^{13} - \frac{203274454241875894428574174277000511237777131382138810552866602}{5652105160071573431180470987933000887356906145958495910936613275} a^{12} + \frac{2398359773065931064103133281240261154818275986693959162568069451}{5652105160071573431180470987933000887356906145958495910936613275} a^{11} - \frac{1132582147905889870376999736167117365780490870637863600444989999}{5652105160071573431180470987933000887356906145958495910936613275} a^{10} - \frac{1171828363693487468165610482666614746782963126704518752044454833}{5652105160071573431180470987933000887356906145958495910936613275} a^{9} - \frac{384235095202508789642917297682162331352443664207526683859581882}{1130421032014314686236094197586600177471381229191699182187322655} a^{8} + \frac{22470665999017583822927681137004446616123336275601218337038564}{79607114930585541284231985745535223765590227407866139590656525} a^{7} + \frac{2226134551442776375653115080078309636965917011992920034297827136}{5652105160071573431180470987933000887356906145958495910936613275} a^{6} + \frac{67376768010575635237728731258628363218154532609982007543110537}{1130421032014314686236094197586600177471381229191699182187322655} a^{5} + \frac{326461113687500842059850436403968072402197463248990047869989417}{1130421032014314686236094197586600177471381229191699182187322655} a^{4} + \frac{121709862721088551849059783995418687859825040709281189199619842}{1130421032014314686236094197586600177471381229191699182187322655} a^{3} + \frac{303899343058556705725604931989826555760187226092196301664729681}{1130421032014314686236094197586600177471381229191699182187322655} a^{2} + \frac{20739460698859312106830422036956147863362749082263307249858875}{226084206402862937247218839517320035494276245838339836437464531} a + \frac{34733554007981274214807583627308801131891081671422976928724799}{226084206402862937247218839517320035494276245838339836437464531}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{12}\times C_{12}$, which has order $41472$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103071.243274 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $Q_{16}$ |
| Character table for $Q_{16}$ |
Intermediate fields
| \(\Q(\sqrt{505}) \), \(\Q(\sqrt{101}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{101})\), 4.4.51005.1 x2, 4.4.2525.1 x2, 8.8.65037750625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |