Normalized defining polynomial
\( x^{16} - 3 x^{15} + 1243 x^{14} + 544 x^{13} + 612545 x^{12} + 1854491 x^{11} + 160968008 x^{10} + 783771762 x^{9} + 23302576816 x^{8} + 121079233072 x^{7} + 2150065913720 x^{6} + 6160562935376 x^{5} + 65896886115085 x^{4} + 110526109065100 x^{3} + 2915744632504734 x^{2} - 8522534230317664 x + 56812866336026263 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27434520006428699643943668849708793135373210953=71^{12}\cdot 73^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $798.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{15} - \frac{446653574272016499082194004849562533924867781161699385736622775508744287877991970153938277344190610976782069329565890545}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{14} + \frac{1294192704213661095264816068012450383766922100363190635833292409343735616805209206374934727349270205976033499939848433695}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{13} + \frac{318269821372143372366543851018924884312764621305382631960782844932765098312646947099223208641513595102288043917803426365}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{12} - \frac{2121075275470205779708652868866232598761429892699544534224215106278430919863316645502997084937651343212060746398081396934}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{11} - \frac{1098482115783692949571378889427700642032001326454048789996393866763547684992933506956172252880025069430756620725761487360}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{10} - \frac{944987027426957134993916351495960453347895498624037099428568688021407334877150122084677372934709411260386215994544563642}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{9} + \frac{728900043186304517914976467015953214534988968913654413037414033758700776159901253351081107528568987304007018508791197402}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{8} + \frac{1526568697506633298028786887115821763546306517770511049028807036872256021410285945736603301981090159565966992668294063661}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{7} - \frac{702545224445470590832568703441492936815949867245784273562505150266883827387846126890393399449554179680554771037812783851}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{6} + \frac{1224911707728013215909503469844518936701618691933044023674885995712404291155139286045518943484199845030009466213450054686}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{5} + \frac{1306570963172703816518104957422964585801514268063218282501917516731118161293858554538197108003158167026755979280042719331}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{4} - \frac{1776784773239810370444916565162251472927423343840484042895586456741498809709855916515665449607003247972807508303770854520}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{3} + \frac{1584378397683532051097007803193053543414224122362638453785847029957414965953054592638106805032734643260175372470707271315}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a^{2} - \frac{1987196667511973033717522672637902330383652395426689571112330424674466230485543717720670637282280526165856218954147342420}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961} a - \frac{496632636250604831595668601904574148032697809872332496365408955934797843444363139728852900983749611958359174423928805178}{4669266758453259434246881769374972849798103026213254148905937889266785412685656338956294874029743329278513988662067066961}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{56}$, which has order $896$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31378584997900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-71}) \), 4.0.367993.1, 8.0.52680234011477833.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $16$ | $16$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $71$ | 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 73 | Data not computed | ||||||