Normalized defining polynomial
\( x^{16} - 6 x^{15} + 38 x^{14} - 50 x^{13} + 2 x^{12} + 764 x^{11} - 1246 x^{10} + 1414 x^{9} + 6239 x^{8} - 9556 x^{7} + 12458 x^{6} + 30822 x^{5} - 22786 x^{4} + 43090 x^{3} + 94988 x^{2} + 65336 x + 126481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2739150950879730073600000000=2^{24}\cdot 5^{8}\cdot 29^{2}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{38} a^{12} + \frac{3}{19} a^{11} + \frac{5}{38} a^{10} + \frac{4}{19} a^{9} - \frac{3}{19} a^{8} + \frac{5}{19} a^{7} - \frac{9}{38} a^{6} - \frac{1}{19} a^{5} + \frac{3}{19} a^{4} + \frac{8}{19} a^{3} - \frac{1}{38} a^{2} - \frac{2}{19} a - \frac{7}{38}$, $\frac{1}{38} a^{13} + \frac{7}{38} a^{11} - \frac{3}{38} a^{10} + \frac{3}{38} a^{9} + \frac{4}{19} a^{8} + \frac{7}{38} a^{7} - \frac{5}{38} a^{6} - \frac{1}{38} a^{5} + \frac{9}{19} a^{4} + \frac{17}{38} a^{3} - \frac{17}{38} a^{2} - \frac{1}{19} a + \frac{2}{19}$, $\frac{1}{38} a^{14} - \frac{7}{38} a^{11} + \frac{3}{19} a^{10} + \frac{9}{38} a^{9} - \frac{4}{19} a^{8} + \frac{1}{38} a^{7} - \frac{7}{19} a^{6} + \frac{13}{38} a^{5} - \frac{3}{19} a^{4} - \frac{15}{38} a^{3} + \frac{5}{38} a^{2} + \frac{13}{38} a - \frac{4}{19}$, $\frac{1}{186619534690177931017791112269122} a^{15} + \frac{56865620654677424160255088180}{93309767345088965508895556134561} a^{14} - \frac{1152428289727681671244807099961}{186619534690177931017791112269122} a^{13} - \frac{625693390807399297712183162924}{93309767345088965508895556134561} a^{12} + \frac{12658915559384952099186115633466}{93309767345088965508895556134561} a^{11} + \frac{29838979768619603000252904087255}{186619534690177931017791112269122} a^{10} + \frac{9147204281065129002918447001631}{93309767345088965508895556134561} a^{9} - \frac{13310391386657286946649539186300}{93309767345088965508895556134561} a^{8} + \frac{7819300817550794825666309757157}{93309767345088965508895556134561} a^{7} + \frac{84389272868684874864621657674249}{186619534690177931017791112269122} a^{6} - \frac{1187259225392086986375372123155}{93309767345088965508895556134561} a^{5} + \frac{1212945140167141012693549162024}{4911040386583629763626081901819} a^{4} + \frac{8653828551132320219357362572269}{186619534690177931017791112269122} a^{3} - \frac{20580993564829896079231924921673}{186619534690177931017791112269122} a^{2} - \frac{3927270716073390851939098995913}{9822080773167259527252163803638} a + \frac{46053663230128669919060907570759}{93309767345088965508895556134561}$
Class group and class number
$C_{2}\times C_{2}\times C_{40}$, which has order $160$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120998.246464 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 77 conjugacy class representatives for t16n1429 are not computed |
| Character table for t16n1429 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2225.1, 8.8.112795040000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.20 | $x^{8} + 8 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ |
| 2.8.12.20 | $x^{8} + 8 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.8.6.2 | $x^{8} + 979 x^{4} + 285156$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |