Normalized defining polynomial
\( x^{16} - 3 x^{15} + 7 x^{14} - 9 x^{13} + 19 x^{12} - 16 x^{11} + 49 x^{10} - 32 x^{9} + 98 x^{8} - 110 x^{7} + 145 x^{6} - 40 x^{5} + 52 x^{4} + 24 x^{3} + 19 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(273503893564697265625=5^{12}\cdot 439^{2}\cdot 2411^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 439, 2411$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{205977825235199} a^{15} - \frac{86472378832890}{205977825235199} a^{14} + \frac{80233741707654}{205977825235199} a^{13} - \frac{96481413828759}{205977825235199} a^{12} - \frac{23499708676678}{205977825235199} a^{11} - \frac{36012778488181}{205977825235199} a^{10} - \frac{99675575155052}{205977825235199} a^{9} + \frac{8122615099927}{205977825235199} a^{8} - \frac{64866146372771}{205977825235199} a^{7} + \frac{7476606907292}{205977825235199} a^{6} + \frac{99560768171592}{205977825235199} a^{5} - \frac{35925738293734}{205977825235199} a^{4} + \frac{71652122873333}{205977825235199} a^{3} - \frac{80250160234270}{205977825235199} a^{2} - \frac{38208338690378}{205977825235199} a - \frac{63266210403826}{205977825235199}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5402910252679}{205977825235199} a^{15} + \frac{46677299236925}{205977825235199} a^{14} - \frac{140614961861567}{205977825235199} a^{13} + \frac{291854043757291}{205977825235199} a^{12} - \frac{443957656815709}{205977825235199} a^{11} + \frac{740202624048061}{205977825235199} a^{10} - \frac{934438493449350}{205977825235199} a^{9} + \frac{1776041197076504}{205977825235199} a^{8} - \frac{1997760472380408}{205977825235199} a^{7} + \frac{3751501176001494}{205977825235199} a^{6} - \frac{5108365611216536}{205977825235199} a^{5} + \frac{5552410728464540}{205977825235199} a^{4} - \frac{2660814452156036}{205977825235199} a^{3} + \frac{1468545542449497}{205977825235199} a^{2} + \frac{186428986658261}{205977825235199} a + \frac{215851615763501}{205977825235199} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4846.77455506 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for t16n1497 |
| Character table for t16n1497 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.8.661518125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 439 | Data not computed | ||||||
| 2411 | Data not computed | ||||||