Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} - 37 x^{13} + 42 x^{12} + 163 x^{11} + 172 x^{10} - 924 x^{9} + 587 x^{8} + 4824 x^{7} + 26536 x^{6} + 36664 x^{5} + 34784 x^{4} + 13280 x^{3} + 5120 x^{2} - 2304 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(273409957389535508936652241=41^{12}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} - \frac{1}{16} a^{9} + \frac{7}{16} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{3}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{992} a^{13} + \frac{11}{496} a^{12} - \frac{21}{496} a^{11} - \frac{29}{992} a^{10} + \frac{85}{496} a^{9} + \frac{191}{992} a^{8} + \frac{47}{248} a^{7} + \frac{4}{31} a^{6} - \frac{165}{992} a^{5} + \frac{15}{31} a^{4} + \frac{85}{248} a^{3} + \frac{39}{124} a^{2} + \frac{13}{62} a - \frac{6}{31}$, $\frac{1}{819392} a^{14} - \frac{15}{204848} a^{13} + \frac{5277}{409696} a^{12} + \frac{40615}{819392} a^{11} - \frac{23791}{204848} a^{10} + \frac{54203}{819392} a^{9} + \frac{82783}{409696} a^{8} - \frac{2753}{14632} a^{7} - \frac{39925}{819392} a^{6} - \frac{155931}{409696} a^{5} + \frac{57577}{204848} a^{4} + \frac{849}{3658} a^{3} - \frac{23627}{51212} a^{2} - \frac{10769}{25606} a - \frac{2389}{12803}$, $\frac{1}{1002783673831710202928384} a^{15} - \frac{20698583377732511}{35813702636846792961728} a^{14} + \frac{64955782676920268957}{501391836915855101464192} a^{13} - \frac{128710790072151942111}{143254810547387171846912} a^{12} + \frac{973381139002653319767}{250695918457927550732096} a^{11} - \frac{73401275939503686703621}{1002783673831710202928384} a^{10} + \frac{751896835371066213749}{16173930223092100047232} a^{9} + \frac{10512607020040434566097}{125347959228963775366048} a^{8} - \frac{316440936760747028273957}{1002783673831710202928384} a^{7} - \frac{28691161561031770528233}{71627405273693585923456} a^{6} - \frac{120041330034114396634611}{250695918457927550732096} a^{5} + \frac{18412399272092819953843}{62673979614481887683024} a^{4} + \frac{855630479371012897544}{3917123725905117980189} a^{3} + \frac{844540633726716063901}{4476712829605849120216} a^{2} + \frac{2879523553914499719569}{15668494903620471920756} a - \frac{842264651240244335037}{7834247451810235960378}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12530682.7114 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T158):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 4.2.99179.1, 4.2.4066339.1, 8.2.280256150219.1 x2, 8.0.403295435681.1 x2, 8.4.16535112862921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $59$ | $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |