Normalized defining polynomial
\( x^{16} - 2 x^{15} - 26 x^{14} + 97 x^{13} + 222 x^{12} - 1649 x^{11} + 2145 x^{10} + 3620 x^{9} - 6441 x^{8} - 11003 x^{7} + 13201 x^{6} + 21811 x^{5} + 35690 x^{4} - 177095 x^{3} + 212585 x^{2} - 32622 x + 22987 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(272312684996154152285848081=13^{12}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{51} a^{8} + \frac{4}{51} a^{7} + \frac{19}{51} a^{6} - \frac{11}{51} a^{5} - \frac{1}{3} a^{4} + \frac{1}{51} a^{3} + \frac{1}{51} a^{2} - \frac{11}{51} a - \frac{7}{17}$, $\frac{1}{51} a^{9} + \frac{1}{17} a^{7} + \frac{5}{17} a^{6} - \frac{8}{17} a^{5} + \frac{6}{17} a^{4} - \frac{1}{17} a^{3} - \frac{5}{17} a^{2} + \frac{23}{51} a - \frac{6}{17}$, $\frac{1}{51} a^{10} + \frac{1}{17} a^{7} + \frac{7}{17} a^{6} - \frac{1}{17} a^{4} - \frac{6}{17} a^{3} + \frac{20}{51} a^{2} + \frac{5}{17} a + \frac{4}{17}$, $\frac{1}{51} a^{11} - \frac{8}{51} a^{7} - \frac{23}{51} a^{6} + \frac{13}{51} a^{5} + \frac{16}{51} a^{4} - \frac{5}{51} a^{2} - \frac{23}{51} a - \frac{5}{51}$, $\frac{1}{1989} a^{12} - \frac{8}{1989} a^{10} - \frac{16}{1989} a^{9} + \frac{11}{1989} a^{8} + \frac{304}{1989} a^{7} - \frac{10}{117} a^{6} + \frac{718}{1989} a^{5} - \frac{88}{663} a^{4} + \frac{886}{1989} a^{3} - \frac{18}{221} a^{2} - \frac{736}{1989} a - \frac{394}{1989}$, $\frac{1}{33813} a^{13} + \frac{7}{33813} a^{12} + \frac{226}{33813} a^{11} - \frac{76}{11271} a^{10} + \frac{133}{33813} a^{9} + \frac{49}{11271} a^{8} - \frac{3268}{33813} a^{7} - \frac{6751}{33813} a^{6} - \frac{15791}{33813} a^{5} + \frac{523}{2601} a^{4} + \frac{3271}{33813} a^{3} + \frac{15290}{33813} a^{2} - \frac{5975}{33813} a + \frac{8162}{33813}$, $\frac{1}{101439} a^{14} - \frac{10}{101439} a^{12} - \frac{484}{101439} a^{11} + \frac{191}{33813} a^{10} + \frac{73}{33813} a^{9} + \frac{313}{33813} a^{8} + \frac{9002}{101439} a^{7} + \frac{29443}{101439} a^{6} - \frac{20908}{101439} a^{5} + \frac{6986}{33813} a^{4} - \frac{11132}{33813} a^{3} + \frac{7457}{101439} a^{2} + \frac{2642}{101439} a + \frac{41075}{101439}$, $\frac{1}{231760632607356501631359} a^{15} - \frac{777857506843231873}{231760632607356501631359} a^{14} + \frac{3221916652941303461}{231760632607356501631359} a^{13} + \frac{16773875215067219263}{77253544202452167210453} a^{12} - \frac{1253869017099078192011}{231760632607356501631359} a^{11} + \frac{78251847318530069447}{25751181400817389070151} a^{10} + \frac{112055743998760164373}{77253544202452167210453} a^{9} + \frac{1405715814448453950710}{231760632607356501631359} a^{8} + \frac{21801396511946302051859}{231760632607356501631359} a^{7} + \frac{41185671215681777310244}{231760632607356501631359} a^{6} - \frac{71168952898474411414367}{231760632607356501631359} a^{5} - \frac{24453059639122665788885}{77253544202452167210453} a^{4} - \frac{9226070439236051336107}{231760632607356501631359} a^{3} + \frac{4344625630471881576136}{77253544202452167210453} a^{2} + \frac{5137697623393698823976}{77253544202452167210453} a + \frac{39147526681615295325667}{231760632607356501631359}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3807723.11422 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-559}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{13}, \sqrt{-43})\), 4.2.7267.1 x2, 4.0.24037.1 x2, 8.0.97644375361.1, 8.2.383765103163.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |