Normalized defining polynomial
\( x^{16} - x^{15} + 5 x^{14} - 14 x^{13} + 14 x^{12} + 31 x^{11} - 30 x^{10} + 434 x^{9} - 1059 x^{8} + 2170 x^{7} - 750 x^{6} + 3875 x^{5} + 8750 x^{4} - 43750 x^{3} + 78125 x^{2} - 78125 x + 390625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27204384060547119140625=3^{8}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(285=3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{285}(1,·)$, $\chi_{285}(134,·)$, $\chi_{285}(77,·)$, $\chi_{285}(208,·)$, $\chi_{285}(248,·)$, $\chi_{285}(151,·)$, $\chi_{285}(284,·)$, $\chi_{285}(94,·)$, $\chi_{285}(37,·)$, $\chi_{285}(227,·)$, $\chi_{285}(229,·)$, $\chi_{285}(172,·)$, $\chi_{285}(113,·)$, $\chi_{285}(56,·)$, $\chi_{285}(58,·)$, $\chi_{285}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{275} a^{10} - \frac{1}{25} a^{9} - \frac{2}{5} a^{8} + \frac{1}{25} a^{7} - \frac{11}{25} a^{6} - \frac{109}{275} a^{5} + \frac{2}{5} a^{4} - \frac{6}{25} a^{3} - \frac{9}{25} a^{2} + \frac{2}{5} a + \frac{4}{11}$, $\frac{1}{1375} a^{11} - \frac{1}{1375} a^{10} + \frac{1}{25} a^{9} + \frac{51}{125} a^{8} + \frac{24}{125} a^{7} + \frac{331}{1375} a^{6} + \frac{134}{275} a^{5} + \frac{44}{125} a^{4} + \frac{6}{125} a^{3} + \frac{9}{25} a^{2} - \frac{18}{55} a - \frac{3}{11}$, $\frac{1}{27500} a^{12} + \frac{1}{6875} a^{11} + \frac{1}{2500} a^{9} + \frac{226}{625} a^{8} - \frac{756}{6875} a^{7} + \frac{1}{220} a^{6} - \frac{164}{625} a^{5} - \frac{131}{625} a^{4} + \frac{1}{4} a^{3} + \frac{1}{275} a^{2} + \frac{14}{55} a - \frac{1}{4}$, $\frac{1}{243237500} a^{13} + \frac{629}{243237500} a^{12} - \frac{72}{486475} a^{11} + \frac{3501}{22112500} a^{10} - \frac{820971}{22112500} a^{9} + \frac{14323994}{60809375} a^{8} + \frac{327069}{1945900} a^{7} + \frac{48514909}{243237500} a^{6} + \frac{1234244}{5528125} a^{5} - \frac{33807}{176900} a^{4} - \frac{2004361}{9729500} a^{3} + \frac{217994}{486475} a^{2} + \frac{134413}{389180} a + \frac{1803}{7076}$, $\frac{1}{1216187500} a^{14} - \frac{1}{1216187500} a^{13} + \frac{499}{60809375} a^{12} - \frac{278489}{1216187500} a^{11} + \frac{318389}{1216187500} a^{10} - \frac{21552561}{304046875} a^{9} + \frac{84062849}{243237500} a^{8} + \frac{323550659}{1216187500} a^{7} - \frac{18720796}{304046875} a^{6} + \frac{41316639}{243237500} a^{5} + \frac{13932769}{48647500} a^{4} + \frac{784951}{2432375} a^{3} - \frac{304223}{1945900} a^{2} - \frac{61173}{389180} a - \frac{4705}{19459}$, $\frac{1}{6080937500} a^{15} - \frac{1}{6080937500} a^{14} + \frac{1}{1216187500} a^{13} + \frac{40493}{3040468750} a^{12} + \frac{1195889}{6080937500} a^{11} + \frac{2850031}{6080937500} a^{10} + \frac{33321597}{608093750} a^{9} + \frac{1328617559}{6080937500} a^{8} + \frac{2921404941}{6080937500} a^{7} + \frac{173040217}{608093750} a^{6} + \frac{15754301}{48647500} a^{5} + \frac{224859}{48647500} a^{4} + \frac{633277}{4864750} a^{3} - \frac{930101}{1945900} a^{2} + \frac{35505}{77836} a + \frac{1139}{77836}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{389180} a^{15} - \frac{1}{77836} a^{14} + \frac{7}{194590} a^{13} - \frac{7}{194590} a^{12} - \frac{31}{389180} a^{11} + \frac{3}{38918} a^{10} - \frac{217}{194590} a^{9} + \frac{1059}{389180} a^{8} - \frac{217}{38918} a^{7} + \frac{75}{38918} a^{6} - \frac{775}{77836} a^{5} - \frac{875}{38918} a^{4} + \frac{4375}{38918} a^{3} - \frac{15625}{77836} a^{2} - \frac{1253}{194590} a - \frac{78125}{77836} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49344.1781525 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |