Normalized defining polynomial
\( x^{16} + 9 x^{14} + 56 x^{12} + 279 x^{10} + 1111 x^{8} + 6975 x^{6} + 35000 x^{4} + 140625 x^{2} + 390625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(271737008656000000000000=2^{16}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(380=2^{2}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{380}(1,·)$, $\chi_{380}(267,·)$, $\chi_{380}(77,·)$, $\chi_{380}(341,·)$, $\chi_{380}(343,·)$, $\chi_{380}(153,·)$, $\chi_{380}(37,·)$, $\chi_{380}(227,·)$, $\chi_{380}(229,·)$, $\chi_{380}(39,·)$, $\chi_{380}(303,·)$, $\chi_{380}(113,·)$, $\chi_{380}(379,·)$, $\chi_{380}(151,·)$, $\chi_{380}(189,·)$, $\chi_{380}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{27775} a^{10} - \frac{6}{25} a^{8} - \frac{4}{25} a^{6} - \frac{11}{25} a^{4} + \frac{1}{25} a^{2} + \frac{279}{1111}$, $\frac{1}{138875} a^{11} - \frac{6}{125} a^{9} + \frac{46}{125} a^{7} - \frac{61}{125} a^{5} + \frac{51}{125} a^{3} - \frac{1943}{5555} a$, $\frac{1}{694375} a^{12} + \frac{9}{694375} a^{10} + \frac{121}{625} a^{8} - \frac{11}{625} a^{6} + \frac{1}{625} a^{4} + \frac{279}{27775} a^{2} + \frac{56}{1111}$, $\frac{1}{3471875} a^{13} + \frac{9}{3471875} a^{11} + \frac{121}{3125} a^{9} - \frac{11}{3125} a^{7} + \frac{1}{3125} a^{5} + \frac{279}{138875} a^{3} + \frac{56}{5555} a$, $\frac{1}{17359375} a^{14} + \frac{9}{17359375} a^{12} + \frac{56}{17359375} a^{10} - \frac{3136}{15625} a^{8} + \frac{1}{15625} a^{6} + \frac{279}{694375} a^{4} + \frac{56}{27775} a^{2} + \frac{9}{1111}$, $\frac{1}{86796875} a^{15} + \frac{9}{86796875} a^{13} + \frac{56}{86796875} a^{11} - \frac{3136}{78125} a^{9} - \frac{31249}{78125} a^{7} + \frac{1389029}{3471875} a^{5} - \frac{55494}{138875} a^{3} + \frac{2231}{5555} a$
Class group and class number
$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{9}{86796875} a^{15} + \frac{56}{86796875} a^{13} + \frac{279}{86796875} a^{11} + \frac{1}{78125} a^{9} + \frac{284}{78125} a^{7} + \frac{56}{138875} a^{5} + \frac{9}{5555} a^{3} + \frac{5}{1111} a \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 123279.066823 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |