Properties

Label 16.0.271...000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2.717\times 10^{23}$
Root discriminant \(29.15\)
Ramified primes $2,5,19$
Class number $16$ (GRH)
Class group [2, 8] (GRH)
Galois group $C_4\times C_2^2$ (as 16T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 9*x^14 + 56*x^12 + 279*x^10 + 1111*x^8 + 6975*x^6 + 35000*x^4 + 140625*x^2 + 390625)
 
gp: K = bnfinit(y^16 + 9*y^14 + 56*y^12 + 279*y^10 + 1111*y^8 + 6975*y^6 + 35000*y^4 + 140625*y^2 + 390625, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 9*x^14 + 56*x^12 + 279*x^10 + 1111*x^8 + 6975*x^6 + 35000*x^4 + 140625*x^2 + 390625);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 9*x^14 + 56*x^12 + 279*x^10 + 1111*x^8 + 6975*x^6 + 35000*x^4 + 140625*x^2 + 390625)
 

\( x^{16} + 9x^{14} + 56x^{12} + 279x^{10} + 1111x^{8} + 6975x^{6} + 35000x^{4} + 140625x^{2} + 390625 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(271737008656000000000000\) \(\medspace = 2^{16}\cdot 5^{12}\cdot 19^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(29.15\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 5^{3/4}19^{1/2}\approx 29.149714088647936$
Ramified primes:   \(2\), \(5\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(380=2^{2}\cdot 5\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{380}(1,·)$, $\chi_{380}(267,·)$, $\chi_{380}(77,·)$, $\chi_{380}(341,·)$, $\chi_{380}(343,·)$, $\chi_{380}(153,·)$, $\chi_{380}(37,·)$, $\chi_{380}(227,·)$, $\chi_{380}(229,·)$, $\chi_{380}(39,·)$, $\chi_{380}(303,·)$, $\chi_{380}(113,·)$, $\chi_{380}(379,·)$, $\chi_{380}(151,·)$, $\chi_{380}(189,·)$, $\chi_{380}(191,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5}a^{9}-\frac{1}{5}a^{7}+\frac{1}{5}a^{5}-\frac{1}{5}a^{3}+\frac{1}{5}a$, $\frac{1}{27775}a^{10}-\frac{6}{25}a^{8}-\frac{4}{25}a^{6}-\frac{11}{25}a^{4}+\frac{1}{25}a^{2}+\frac{279}{1111}$, $\frac{1}{138875}a^{11}-\frac{6}{125}a^{9}+\frac{46}{125}a^{7}-\frac{61}{125}a^{5}+\frac{51}{125}a^{3}-\frac{1943}{5555}a$, $\frac{1}{694375}a^{12}+\frac{9}{694375}a^{10}+\frac{121}{625}a^{8}-\frac{11}{625}a^{6}+\frac{1}{625}a^{4}+\frac{279}{27775}a^{2}+\frac{56}{1111}$, $\frac{1}{3471875}a^{13}+\frac{9}{3471875}a^{11}+\frac{121}{3125}a^{9}-\frac{11}{3125}a^{7}+\frac{1}{3125}a^{5}+\frac{279}{138875}a^{3}+\frac{56}{5555}a$, $\frac{1}{17359375}a^{14}+\frac{9}{17359375}a^{12}+\frac{56}{17359375}a^{10}-\frac{3136}{15625}a^{8}+\frac{1}{15625}a^{6}+\frac{279}{694375}a^{4}+\frac{56}{27775}a^{2}+\frac{9}{1111}$, $\frac{1}{86796875}a^{15}+\frac{9}{86796875}a^{13}+\frac{56}{86796875}a^{11}-\frac{3136}{78125}a^{9}-\frac{31249}{78125}a^{7}+\frac{1389029}{3471875}a^{5}-\frac{55494}{138875}a^{3}+\frac{2231}{5555}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{9}{86796875} a^{15} + \frac{56}{86796875} a^{13} + \frac{279}{86796875} a^{11} + \frac{1}{78125} a^{9} + \frac{284}{78125} a^{7} + \frac{56}{138875} a^{5} + \frac{9}{5555} a^{3} + \frac{5}{1111} a \)  (order $20$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{9}{694375}a^{14}+\frac{1}{27775}a^{12}+\frac{559}{694375}a^{4}-\frac{3024}{27775}a^{2}-1$, $\frac{9}{694375}a^{14}+\frac{1}{5555}a^{11}+\frac{559}{694375}a^{4}+\frac{2531}{5555}a$, $\frac{9}{694375}a^{14}-\frac{4}{138875}a^{13}+\frac{559}{694375}a^{4}-\frac{15679}{138875}a^{3}$, $\frac{843}{86796875}a^{15}+\frac{509}{17359375}a^{14}+\frac{10737}{86796875}a^{13}+\frac{4431}{17359375}a^{12}+\frac{31808}{86796875}a^{11}+\frac{279}{17359375}a^{10}+\frac{2}{78125}a^{9}+\frac{1}{15625}a^{8}+\frac{568}{78125}a^{7}+\frac{284}{15625}a^{6}+\frac{236308}{3471875}a^{5}+\frac{15959}{138875}a^{4}+\frac{32367}{138875}a^{3}+\frac{6832}{27775}a^{2}-\frac{443}{5555}a-\frac{1086}{1111}$, $\frac{449}{17359375}a^{15}+\frac{189}{3471875}a^{14}+\frac{376}{1578125}a^{13}+\frac{491}{3471875}a^{12}+\frac{12499}{17359375}a^{11}-\frac{56}{3471875}a^{10}+\frac{56}{15625}a^{9}+\frac{11}{3125}a^{8}+\frac{279}{15625}a^{7}-\frac{1}{3125}a^{6}+\frac{314164}{3471875}a^{5}+\frac{78118}{694375}a^{4}+\frac{8578}{12625}a^{3}+\frac{15399}{27775}a^{2}+\frac{10024}{5555}a-\frac{1156}{1111}$, $\frac{2227}{86796875}a^{15}-\frac{216}{17359375}a^{14}+\frac{9943}{86796875}a^{13}+\frac{3181}{17359375}a^{12}+\frac{30687}{86796875}a^{11}+\frac{15904}{17359375}a^{10}+\frac{278}{78125}a^{9}+\frac{1}{15625}a^{8}+\frac{827}{78125}a^{7}+\frac{284}{15625}a^{6}+\frac{311364}{3471875}a^{5}+\frac{841}{694375}a^{4}+\frac{61991}{138875}a^{3}+\frac{2576}{5555}a^{2}-\frac{643}{5555}a+\frac{4778}{1111}$, $\frac{2547}{17359375}a^{14}+\frac{15848}{17359375}a^{12}-\frac{1}{1111}a^{11}+\frac{78957}{17359375}a^{10}+\frac{283}{15625}a^{8}+\frac{2247}{15625}a^{6}+\frac{15848}{27775}a^{4}+\frac{2547}{1111}a^{2}-\frac{5864}{1111}a+\frac{7075}{1111}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 123279.066823 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 123279.066823 \cdot 16}{20\cdot\sqrt{271737008656000000000000}}\cr\approx \mathstrut & 0.459561752581 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 9*x^14 + 56*x^12 + 279*x^10 + 1111*x^8 + 6975*x^6 + 35000*x^4 + 140625*x^2 + 390625)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 9*x^14 + 56*x^12 + 279*x^10 + 1111*x^8 + 6975*x^6 + 35000*x^4 + 140625*x^2 + 390625, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 9*x^14 + 56*x^12 + 279*x^10 + 1111*x^8 + 6975*x^6 + 35000*x^4 + 140625*x^2 + 390625);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 9*x^14 + 56*x^12 + 279*x^10 + 1111*x^8 + 6975*x^6 + 35000*x^4 + 140625*x^2 + 390625);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times C_4$ (as 16T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4\times C_2^2$
Character table for $C_4\times C_2^2$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-95}) \), \(\Q(\sqrt{95}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{19}) \), \(\Q(i, \sqrt{95})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{19})\), \(\Q(\sqrt{5}, \sqrt{-19})\), \(\Q(\sqrt{-5}, \sqrt{19})\), \(\Q(\sqrt{5}, \sqrt{19})\), \(\Q(\sqrt{-5}, \sqrt{-19})\), \(\Q(\zeta_{5})\), \(\Q(\zeta_{20})^+\), 4.4.45125.1, 4.0.722000.3, 8.0.20851360000.1, \(\Q(\zeta_{20})\), 8.0.521284000000.2, 8.0.2036265625.1, 8.0.521284000000.1, 8.0.521284000000.3, 8.8.521284000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{4}$ R ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.2.0.1}{2} }^{8}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{4}$ R ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
\(5\) Copy content Toggle raw display 5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
\(19\) Copy content Toggle raw display 19.4.2.1$x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$