Normalized defining polynomial
\( x^{16} - x^{15} - 9 x^{14} + 6 x^{13} + 123 x^{12} + 254 x^{11} + 229 x^{10} + 313 x^{9} + 1638 x^{8} + 3529 x^{7} + 4151 x^{6} + 3843 x^{5} + 5443 x^{4} + 6438 x^{3} + 5024 x^{2} + 2218 x + 401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(269966643649468994140625=5^{14}\cdot 89^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11301104424949398320667686251} a^{15} + \frac{4073891999579854998936209589}{11301104424949398320667686251} a^{14} + \frac{5064127686195204642057681002}{11301104424949398320667686251} a^{13} + \frac{2991925437843022491156283101}{11301104424949398320667686251} a^{12} - \frac{5593842418944482160976202487}{11301104424949398320667686251} a^{11} - \frac{2769573940659014921120373472}{11301104424949398320667686251} a^{10} + \frac{2109524697297418649848131091}{11301104424949398320667686251} a^{9} + \frac{1449495814145229152041690096}{11301104424949398320667686251} a^{8} + \frac{97778596562816747072007501}{11301104424949398320667686251} a^{7} - \frac{3266015738527536775031609597}{11301104424949398320667686251} a^{6} - \frac{3867515227387425605103118403}{11301104424949398320667686251} a^{5} + \frac{5245064494096825278108874878}{11301104424949398320667686251} a^{4} - \frac{3027709670782940840616496808}{11301104424949398320667686251} a^{3} + \frac{4458564796944522901582497514}{11301104424949398320667686251} a^{2} - \frac{1999350639465310638384453498}{11301104424949398320667686251} a + \frac{3990813608154083629449817695}{11301104424949398320667686251}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24104.2464739 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2225.1, 8.8.11015140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $89$ | 89.8.0.1 | $x^{8} - x + 62$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 89.8.7.8 | $x^{8} + 194643$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |