Properties

Label 16.0.26987918400000000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2.699\times 10^{16}$
Root discriminant \(10.64\)
Ramified primes $2,3,5,37$
Class number $1$
Class group trivial
Galois group $(C_2^3\times C_4):S_4$ (as 16T1046)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + x^14 - 5*x^13 + 4*x^12 + 5*x^11 - 4*x^10 - 9*x^8 + 12*x^7 + 2*x^6 - 9*x^5 + 8*x^4 - 7*x^3 + x^2 + x + 1)
 
gp: K = bnfinit(y^16 - y^15 + y^14 - 5*y^13 + 4*y^12 + 5*y^11 - 4*y^10 - 9*y^8 + 12*y^7 + 2*y^6 - 9*y^5 + 8*y^4 - 7*y^3 + y^2 + y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - x^15 + x^14 - 5*x^13 + 4*x^12 + 5*x^11 - 4*x^10 - 9*x^8 + 12*x^7 + 2*x^6 - 9*x^5 + 8*x^4 - 7*x^3 + x^2 + x + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - x^15 + x^14 - 5*x^13 + 4*x^12 + 5*x^11 - 4*x^10 - 9*x^8 + 12*x^7 + 2*x^6 - 9*x^5 + 8*x^4 - 7*x^3 + x^2 + x + 1)
 

\( x^{16} - x^{15} + x^{14} - 5 x^{13} + 4 x^{12} + 5 x^{11} - 4 x^{10} - 9 x^{8} + 12 x^{7} + 2 x^{6} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(26987918400000000\) \(\medspace = 2^{12}\cdot 3^{2}\cdot 5^{8}\cdot 37^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(10.64\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{4/3}3^{1/2}5^{1/2}37^{1/2}\approx 59.363543824214226$
Ramified primes:   \(2\), \(3\), \(5\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{39}a^{14}+\frac{1}{13}a^{13}-\frac{2}{13}a^{12}-\frac{8}{39}a^{11}+\frac{8}{39}a^{10}-\frac{2}{13}a^{9}+\frac{5}{13}a^{8}+\frac{6}{13}a^{7}+\frac{4}{13}a^{6}-\frac{3}{13}a^{5}+\frac{11}{39}a^{4}+\frac{11}{39}a^{3}-\frac{1}{39}a^{2}+\frac{14}{39}a-\frac{2}{39}$, $\frac{1}{577707}a^{15}+\frac{843}{192569}a^{14}+\frac{4656}{192569}a^{13}+\frac{10030}{577707}a^{12}+\frac{134552}{577707}a^{11}-\frac{4963}{14813}a^{10}-\frac{13562}{192569}a^{9}+\frac{1898}{14813}a^{8}+\frac{77300}{192569}a^{7}-\frac{5099}{14813}a^{6}+\frac{286664}{577707}a^{5}-\frac{73447}{577707}a^{4}-\frac{125134}{577707}a^{3}+\frac{246230}{577707}a^{2}+\frac{223381}{577707}a-\frac{86093}{192569}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{201106}{577707}a^{15}+\frac{7532}{577707}a^{14}+\frac{64245}{192569}a^{13}-\frac{748493}{577707}a^{12}-\frac{77726}{577707}a^{11}+\frac{1075390}{577707}a^{10}-\frac{15199}{192569}a^{9}+\frac{89956}{192569}a^{8}-\frac{497879}{192569}a^{7}+\frac{201489}{192569}a^{6}+\frac{1179878}{577707}a^{5}-\frac{24246}{14813}a^{4}+\frac{493821}{192569}a^{3}-\frac{65150}{192569}a^{2}-\frac{984868}{577707}a+\frac{16853}{577707}$, $\frac{36808}{192569}a^{15}+\frac{32166}{192569}a^{14}+\frac{34166}{192569}a^{13}-\frac{6849}{14813}a^{12}-\frac{121721}{192569}a^{11}+\frac{251432}{192569}a^{10}+\frac{112890}{192569}a^{9}+\frac{46686}{192569}a^{8}-\frac{260489}{192569}a^{7}-\frac{83559}{192569}a^{6}+\frac{495246}{192569}a^{5}-\frac{64676}{192569}a^{4}+\frac{21948}{192569}a^{3}+\frac{18294}{192569}a^{2}-\frac{147753}{192569}a+\frac{101838}{192569}$, $\frac{230270}{577707}a^{15}-\frac{183208}{577707}a^{14}+\frac{90684}{192569}a^{13}-\frac{1131022}{577707}a^{12}+\frac{262855}{192569}a^{11}+\frac{954139}{577707}a^{10}-\frac{193210}{192569}a^{9}+\frac{52139}{192569}a^{8}-\frac{718531}{192569}a^{7}+\frac{785319}{192569}a^{6}+\frac{295363}{577707}a^{5}-\frac{1394053}{577707}a^{4}+\frac{2026313}{577707}a^{3}-\frac{1197154}{577707}a^{2}+\frac{17397}{192569}a-\frac{288037}{577707}$, $\frac{154265}{577707}a^{15}+\frac{21017}{577707}a^{14}+\frac{392}{14813}a^{13}-\frac{576859}{577707}a^{12}-\frac{66700}{192569}a^{11}+\frac{1300681}{577707}a^{10}+\frac{61003}{192569}a^{9}-\frac{221252}{192569}a^{8}-\frac{358207}{192569}a^{7}+\frac{153487}{192569}a^{6}+\frac{1950718}{577707}a^{5}-\frac{1526437}{577707}a^{4}-\frac{354064}{577707}a^{3}+\frac{598643}{577707}a^{2}-\frac{23094}{14813}a+\frac{212327}{577707}$, $\frac{400469}{577707}a^{15}-\frac{304595}{577707}a^{14}+\frac{145419}{192569}a^{13}-\frac{1914700}{577707}a^{12}+\frac{1247063}{577707}a^{11}+\frac{1917548}{577707}a^{10}-\frac{359266}{192569}a^{9}+\frac{145643}{192569}a^{8}-\frac{1242431}{192569}a^{7}+\frac{1347851}{192569}a^{6}+\frac{865594}{577707}a^{5}-\frac{71554}{14813}a^{4}+\frac{1062357}{192569}a^{3}-\frac{896252}{192569}a^{2}+\frac{406966}{577707}a+\frac{91372}{577707}$, $\frac{140507}{577707}a^{15}-\frac{56599}{192569}a^{14}+\frac{14073}{192569}a^{13}-\frac{719821}{577707}a^{12}+\frac{658435}{577707}a^{11}+\frac{377436}{192569}a^{10}-\frac{218996}{192569}a^{9}-\frac{290688}{192569}a^{8}-\frac{455963}{192569}a^{7}+\frac{656517}{192569}a^{6}+\frac{1410949}{577707}a^{5}-\frac{2103926}{577707}a^{4}+\frac{176290}{577707}a^{3}-\frac{456011}{577707}a^{2}+\frac{128369}{577707}a+\frac{6604}{14813}$, $\frac{43434}{192569}a^{15}+\frac{211142}{577707}a^{14}+\frac{64136}{192569}a^{13}-\frac{81375}{192569}a^{12}-\frac{775738}{577707}a^{11}+\frac{430984}{577707}a^{10}+\frac{301810}{192569}a^{9}+\frac{176532}{192569}a^{8}-\frac{154701}{192569}a^{7}-\frac{342390}{192569}a^{6}+\frac{311790}{192569}a^{5}+\frac{832696}{577707}a^{4}+\frac{243721}{577707}a^{3}+\frac{755134}{577707}a^{2}-\frac{613190}{577707}a-\frac{35956}{44439}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 31.5416353238 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 31.5416353238 \cdot 1}{2\cdot\sqrt{26987918400000000}}\cr\approx \mathstrut & 0.233189216512 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + x^14 - 5*x^13 + 4*x^12 + 5*x^11 - 4*x^10 - 9*x^8 + 12*x^7 + 2*x^6 - 9*x^5 + 8*x^4 - 7*x^3 + x^2 + x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - x^15 + x^14 - 5*x^13 + 4*x^12 + 5*x^11 - 4*x^10 - 9*x^8 + 12*x^7 + 2*x^6 - 9*x^5 + 8*x^4 - 7*x^3 + x^2 + x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - x^15 + x^14 - 5*x^13 + 4*x^12 + 5*x^11 - 4*x^10 - 9*x^8 + 12*x^7 + 2*x^6 - 9*x^5 + 8*x^4 - 7*x^3 + x^2 + x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - x^15 + x^14 - 5*x^13 + 4*x^12 + 5*x^11 - 4*x^10 - 9*x^8 + 12*x^7 + 2*x^6 - 9*x^5 + 8*x^4 - 7*x^3 + x^2 + x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$(C_2^3\times C_4):S_4$ (as 16T1046):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 768
The 40 conjugacy class representatives for $(C_2^3\times C_4):S_4$
Character table for $(C_2^3\times C_4):S_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.3700.1, 8.0.13690000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ R ${\href{/padicField/41.3.0.1}{3} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.4.2$x^{4} + 4 x^{3} + 4 x^{2} + 12$$2$$2$$4$$C_4$$[2]^{2}$
2.12.8.1$x^{12} + 11 x^{9} + 3 x^{8} - 9 x^{6} - 90 x^{5} + 3 x^{4} - 27 x^{3} + 135 x^{2} + 27 x + 55$$3$$4$$8$$C_3 : C_4$$[\ ]_{3}^{4}$
\(3\) Copy content Toggle raw display 3.4.2.2$x^{4} - 6 x^{3} + 12 x^{2} + 36 x + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.12.0.1$x^{12} + x^{6} + x^{5} + x^{4} + x^{2} + 2$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(5\) Copy content Toggle raw display 5.16.8.1$x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$
\(37\) Copy content Toggle raw display 37.4.0.1$x^{4} + 6 x^{2} + 24 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
37.4.0.1$x^{4} + 6 x^{2} + 24 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
37.8.4.1$x^{8} + 3700 x^{7} + 5133910 x^{6} + 3166256548 x^{5} + 732510094073 x^{4} + 136269235536 x^{3} + 4476368972260 x^{2} + 17928293629116 x + 2173698901413$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$