Normalized defining polynomial
\( x^{16} - 3 x^{15} + 80 x^{14} - 280 x^{13} + 3006 x^{12} - 9305 x^{11} + 56746 x^{10} - 124795 x^{9} + 621706 x^{8} - 329460 x^{7} + 4075490 x^{6} + 6631093 x^{5} + 23495891 x^{4} + 44048875 x^{3} + 48334335 x^{2} + 46880900 x + 35940025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26968313608671985107666015625=5^{12}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{71} a^{12} + \frac{14}{71} a^{11} - \frac{28}{71} a^{10} + \frac{29}{71} a^{9} - \frac{28}{71} a^{8} + \frac{3}{71} a^{7} - \frac{32}{71} a^{6} + \frac{8}{71} a^{5} + \frac{7}{71} a^{4} + \frac{13}{71} a^{3} - \frac{16}{71} a^{2} - \frac{7}{71} a - \frac{35}{71}$, $\frac{1}{71} a^{13} - \frac{11}{71} a^{11} - \frac{5}{71} a^{10} - \frac{8}{71} a^{9} - \frac{31}{71} a^{8} - \frac{3}{71} a^{7} + \frac{30}{71} a^{6} - \frac{34}{71} a^{5} - \frac{14}{71} a^{4} + \frac{15}{71} a^{3} + \frac{4}{71} a^{2} - \frac{8}{71} a - \frac{7}{71}$, $\frac{1}{500195} a^{14} + \frac{1412}{500195} a^{13} - \frac{222}{100039} a^{12} + \frac{31985}{100039} a^{11} - \frac{225719}{500195} a^{10} - \frac{787}{100039} a^{9} + \frac{77096}{500195} a^{8} + \frac{28007}{100039} a^{7} + \frac{220701}{500195} a^{6} - \frac{21530}{100039} a^{5} - \frac{7321}{100039} a^{4} - \frac{142842}{500195} a^{3} + \frac{89396}{500195} a^{2} + \frac{7088}{100039} a + \frac{2436}{100039}$, $\frac{1}{207053776623122502078799950096981352484630368000913405} a^{15} + \frac{12367480147613811215061376359270545301833994179}{207053776623122502078799950096981352484630368000913405} a^{14} - \frac{165696220860582311595478213194822671175617042035781}{207053776623122502078799950096981352484630368000913405} a^{13} + \frac{214401022487425805544598308362717745758448701206747}{41410755324624500415759990019396270496926073600182681} a^{12} - \frac{85236601349670666470239597880594133114648630228185839}{207053776623122502078799950096981352484630368000913405} a^{11} + \frac{62389461779653312657137212845125871984056461452080097}{207053776623122502078799950096981352484630368000913405} a^{10} - \frac{23977848865488255112020787943397626907186572368570379}{207053776623122502078799950096981352484630368000913405} a^{9} - \frac{809518070721982300297201945129911913377805822514868}{18823070602102045643527268190634668407693669818264855} a^{8} + \frac{25667342397338409773708915670713910879837725622938491}{207053776623122502078799950096981352484630368000913405} a^{7} + \frac{90225380203657776202580156127422303072731519657840177}{207053776623122502078799950096981352484630368000913405} a^{6} + \frac{9793586271247334390786863958229046133281689046888385}{41410755324624500415759990019396270496926073600182681} a^{5} - \frac{92097669935783281287573148352148700353351074479456797}{207053776623122502078799950096981352484630368000913405} a^{4} - \frac{42214438451382871222670538953845304204759031368952273}{207053776623122502078799950096981352484630368000913405} a^{3} - \frac{25786212096396005131023705155187886382199209265253688}{207053776623122502078799950096981352484630368000913405} a^{2} - \frac{20463472204632224714076782471798540756274551318803570}{41410755324624500415759990019396270496926073600182681} a - \frac{12894081791110711218418222829843976344745763505292}{34537744224040450722068382001164529188428751960119}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{740065321072581846625820383286902507369353}{146950870562897446471823953227098191969219565650045} a^{15} + \frac{10080828513456506290166751063688802892585218}{146950870562897446471823953227098191969219565650045} a^{14} - \frac{92690635271348315281836087588075879429380922}{146950870562897446471823953227098191969219565650045} a^{13} + \frac{174871723455625368541467860303618869789999031}{29390174112579489294364790645419638393843913130009} a^{12} - \frac{5265499865062320693536952210336583489996090318}{146950870562897446471823953227098191969219565650045} a^{11} + \frac{33981134991209879875916922978694542948362227564}{146950870562897446471823953227098191969219565650045} a^{10} - \frac{148495286768605760152890303086159407304441099773}{146950870562897446471823953227098191969219565650045} a^{9} + \frac{59705741410007946993404095554583407418026802969}{13359170051172495133802177566099835633565415059095} a^{8} - \frac{2104326496496485408589495536670032550386965006593}{146950870562897446471823953227098191969219565650045} a^{7} + \frac{6804860686424569387269233415017017909939815824469}{146950870562897446471823953227098191969219565650045} a^{6} - \frac{2529710950110394004197561498862788029273189748499}{29390174112579489294364790645419638393843913130009} a^{5} + \frac{33471364030572271971528906974281895228390209785786}{146950870562897446471823953227098191969219565650045} a^{4} - \frac{3683195190650265943898903471429792839333224678516}{146950870562897446471823953227098191969219565650045} a^{3} + \frac{89596960061195986729548007123709972187048830462824}{146950870562897446471823953227098191969219565650045} a^{2} + \frac{25710321350653479834567245782982923700140089364921}{29390174112579489294364790645419638393843913130009} a + \frac{4279722116258928542293798751472507539656829790}{24512238626004578227159958836880432355165899191} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45061837.8832 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, \(\Q(\zeta_{5})\), 4.0.12625.1, 8.4.164220320328125.2, 8.4.6568812813125.5, 8.0.159390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101 | Data not computed | ||||||