Normalized defining polynomial
\( x^{16} - 4 x^{15} + 42 x^{14} - 136 x^{13} + 876 x^{12} - 1800 x^{11} + 9133 x^{10} - 12190 x^{9} + 44647 x^{8} - 2460 x^{7} + 83373 x^{6} + 33150 x^{5} + 13276 x^{4} - 1926 x^{3} + 462 x^{2} - 24 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26893256677956496000000000000=2^{16}\cdot 5^{12}\cdot 29^{6}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{19} a^{12} - \frac{3}{19} a^{11} + \frac{4}{19} a^{10} + \frac{9}{19} a^{9} + \frac{9}{19} a^{8} - \frac{2}{19} a^{7} - \frac{3}{19} a^{6} - \frac{9}{19} a^{5} - \frac{7}{19} a^{4} + \frac{3}{19} a^{3} + \frac{4}{19} a^{2} - \frac{7}{19} a + \frac{1}{19}$, $\frac{1}{779} a^{13} + \frac{13}{779} a^{12} + \frac{317}{779} a^{11} - \frac{174}{779} a^{10} - \frac{189}{779} a^{9} + \frac{161}{779} a^{8} + \frac{60}{779} a^{7} + \frac{19}{41} a^{6} + \frac{210}{779} a^{5} - \frac{71}{779} a^{4} - \frac{347}{779} a^{3} + \frac{8}{41} a^{2} - \frac{187}{779} a + \frac{244}{779}$, $\frac{1}{779} a^{14} - \frac{16}{779} a^{12} + \frac{92}{779} a^{11} - \frac{141}{779} a^{10} + \frac{363}{779} a^{9} + \frac{386}{779} a^{8} - \frac{91}{779} a^{7} - \frac{96}{779} a^{6} + \frac{233}{779} a^{5} + \frac{166}{779} a^{4} + \frac{276}{779} a^{3} + \frac{297}{779} a^{2} - \frac{72}{779} a - \frac{220}{779}$, $\frac{1}{4166560472107089246225989129} a^{15} + \frac{2286005015852665935100557}{4166560472107089246225989129} a^{14} + \frac{1839033572273656003827356}{4166560472107089246225989129} a^{13} - \frac{58022958698755938403498823}{4166560472107089246225989129} a^{12} - \frac{212442782593138228914545040}{4166560472107089246225989129} a^{11} - \frac{1445169230836621083486684125}{4166560472107089246225989129} a^{10} + \frac{1204354493067872733368454210}{4166560472107089246225989129} a^{9} + \frac{48871148882640987150931448}{4166560472107089246225989129} a^{8} - \frac{39185224395759388762131276}{219292656426688907696104691} a^{7} + \frac{599225422019700268093182503}{4166560472107089246225989129} a^{6} + \frac{1760963493085686891454866495}{4166560472107089246225989129} a^{5} + \frac{1167802550357132774506541631}{4166560472107089246225989129} a^{4} + \frac{184495855252407401960678106}{378778224737008113293271739} a^{3} - \frac{1193912584258860683773106684}{4166560472107089246225989129} a^{2} - \frac{1410820396741623056001471309}{4166560472107089246225989129} a - \frac{943404943423509705573576576}{4166560472107089246225989129}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 811646.528599 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T610):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.29725.2, \(\Q(\zeta_{20})^+\), 4.0.2378000.5, 8.0.5654884000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |