Properties

Label 16.0.26873856000...0000.6
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 3^{8}\cdot 5^{12}$
Root discriminant $16.38$
Ramified primes $2, 3, 5$
Class number $2$
Class group $[2]$
Galois group $D_4\times C_2$ (as 16T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, 2, 24, 13, -74, 114, -58, -12, 44, -24, -2, 13, -12, 8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 8*x^14 - 12*x^13 + 13*x^12 - 2*x^11 - 24*x^10 + 44*x^9 - 12*x^8 - 58*x^7 + 114*x^6 - 74*x^5 + 13*x^4 + 24*x^3 + 2*x^2 + 2*x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 8*x^14 - 12*x^13 + 13*x^12 - 2*x^11 - 24*x^10 + 44*x^9 - 12*x^8 - 58*x^7 + 114*x^6 - 74*x^5 + 13*x^4 + 24*x^3 + 2*x^2 + 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 13 x^{12} - 2 x^{11} - 24 x^{10} + 44 x^{9} - 12 x^{8} - 58 x^{7} + 114 x^{6} - 74 x^{5} + 13 x^{4} + 24 x^{3} + 2 x^{2} + 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(26873856000000000000=2^{24}\cdot 3^{8}\cdot 5^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.38$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{966} a^{14} - \frac{13}{69} a^{13} + \frac{8}{161} a^{12} + \frac{97}{483} a^{11} + \frac{1}{69} a^{10} + \frac{68}{161} a^{9} - \frac{64}{483} a^{8} - \frac{124}{483} a^{7} + \frac{11}{483} a^{6} - \frac{64}{161} a^{5} - \frac{5}{483} a^{4} - \frac{107}{483} a^{3} + \frac{127}{322} a^{2} - \frac{139}{483} a - \frac{145}{483}$, $\frac{1}{14191506} a^{15} + \frac{27}{68558} a^{14} - \frac{1942375}{14191506} a^{13} - \frac{1492490}{7095753} a^{12} - \frac{486221}{2365251} a^{11} + \frac{2724632}{7095753} a^{10} - \frac{1062451}{7095753} a^{9} + \frac{18035}{788417} a^{8} + \frac{949166}{2365251} a^{7} - \frac{2440100}{7095753} a^{6} + \frac{202096}{1013679} a^{5} + \frac{358710}{788417} a^{4} + \frac{999745}{14191506} a^{3} - \frac{4668821}{14191506} a^{2} - \frac{1848475}{4730502} a + \frac{2778460}{7095753}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1863790}{7095753} a^{15} - \frac{787465}{675786} a^{14} + \frac{18033185}{7095753} a^{13} - \frac{28743760}{7095753} a^{12} + \frac{70205}{14691} a^{11} - \frac{13855391}{7095753} a^{10} - \frac{1866835}{308511} a^{9} + \frac{33567970}{2365251} a^{8} - \frac{19438870}{2365251} a^{7} - \frac{98469520}{7095753} a^{6} + \frac{257061545}{7095753} a^{5} - \frac{76946305}{2365251} a^{4} + \frac{84218275}{7095753} a^{3} + \frac{60260675}{14191506} a^{2} - \frac{1966535}{788417} a + \frac{232235}{1013679} \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5974.10888329 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_4$ (as 16T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16
The 10 conjugacy class representatives for $D_4\times C_2$
Character table for $D_4\times C_2$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-15}) \), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{15})\), \(\Q(\sqrt{-3}, \sqrt{-5})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-5})\), \(\Q(\sqrt{3}, \sqrt{5})\), 4.0.8000.1 x2, 4.0.72000.1 x2, 4.2.2000.1 x2, 4.2.18000.1 x2, 8.0.12960000.1, 8.0.64000000.3, 8.0.5184000000.15, 8.0.5184000000.8 x2, 8.0.324000000.4 x2, 8.0.5184000000.9 x2, 8.4.5184000000.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.14$x^{8} + 12 x^{4} + 144$$4$$2$$12$$D_4$$[2, 2]^{2}$
2.8.12.14$x^{8} + 12 x^{4} + 144$$4$$2$$12$$D_4$$[2, 2]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$