Normalized defining polynomial
\( x^{16} - 6 x^{15} + 18 x^{14} - 34 x^{13} + 28 x^{12} + 44 x^{11} - 190 x^{10} + 320 x^{9} - 274 x^{8} - 100 x^{7} + 940 x^{6} - 1654 x^{5} + 1533 x^{4} - 506 x^{3} + 98 x^{2} - 14 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26873856000000000000=2^{24}\cdot 3^{8}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{2} - \frac{2}{5}$, $\frac{1}{2705} a^{14} - \frac{269}{2705} a^{13} + \frac{204}{2705} a^{12} - \frac{203}{2705} a^{11} - \frac{199}{2705} a^{10} - \frac{811}{2705} a^{9} - \frac{608}{2705} a^{8} + \frac{784}{2705} a^{7} - \frac{1098}{2705} a^{6} - \frac{1171}{2705} a^{5} - \frac{89}{2705} a^{4} - \frac{427}{2705} a^{3} - \frac{857}{2705} a^{2} - \frac{1078}{2705} a + \frac{1171}{2705}$, $\frac{1}{25180470641525} a^{15} - \frac{1626803014}{25180470641525} a^{14} - \frac{469248576576}{5036094128305} a^{13} - \frac{61346708769}{614157820525} a^{12} + \frac{1832919615989}{5036094128305} a^{11} + \frac{466863840539}{25180470641525} a^{10} - \frac{1185745047412}{25180470641525} a^{9} - \frac{9636407693724}{25180470641525} a^{8} - \frac{8810680141152}{25180470641525} a^{7} - \frac{76873618189}{614157820525} a^{6} - \frac{11860860779713}{25180470641525} a^{5} - \frac{732948505078}{5036094128305} a^{4} - \frac{6062774949307}{25180470641525} a^{3} + \frac{1133026641509}{5036094128305} a^{2} + \frac{12445176171283}{25180470641525} a + \frac{6313761253727}{25180470641525}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{11640438763398}{25180470641525} a^{15} + \frac{68969248263277}{25180470641525} a^{14} - \frac{40852475417462}{5036094128305} a^{13} + \frac{9270077165087}{614157820525} a^{12} - \frac{59300863001964}{5036094128305} a^{11} - \frac{536005878035192}{25180470641525} a^{10} + \frac{2171950122055041}{25180470641525} a^{9} - \frac{3558803824105198}{25180470641525} a^{8} + \frac{2913399480462686}{25180470641525} a^{7} + \frac{34088351828247}{614157820525} a^{6} - \frac{10847915221131086}{25180470641525} a^{5} + \frac{3685971985291163}{5036094128305} a^{4} - \frac{16407668437748949}{25180470641525} a^{3} + \frac{919361748012508}{5036094128305} a^{2} - \frac{717106289866809}{25180470641525} a + \frac{81132845508049}{25180470641525} \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9740.05338886 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |