Normalized defining polynomial
\( x^{16} - 6 x^{15} + 17 x^{14} - 30 x^{13} + 35 x^{12} - 24 x^{11} + 36 x^{10} - 240 x^{9} + 824 x^{8} - 1620 x^{7} + 2244 x^{6} - 2292 x^{5} + 1595 x^{4} - 630 x^{3} + 143 x^{2} - 18 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26873856000000000000=2^{24}\cdot 3^{8}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{6} - \frac{1}{2} a^{4} + \frac{1}{3} a^{2} + \frac{1}{12}$, $\frac{1}{12} a^{13} - \frac{1}{6} a^{11} + \frac{1}{6} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3} + \frac{1}{12} a$, $\frac{1}{50616} a^{14} + \frac{1433}{50616} a^{13} + \frac{101}{50616} a^{12} + \frac{2005}{25308} a^{11} - \frac{1285}{25308} a^{10} - \frac{463}{4218} a^{9} + \frac{3319}{25308} a^{8} - \frac{985}{25308} a^{7} + \frac{412}{6327} a^{6} - \frac{1189}{8436} a^{5} + \frac{5873}{25308} a^{4} - \frac{439}{12654} a^{3} - \frac{19567}{50616} a^{2} - \frac{3955}{50616} a + \frac{12823}{50616}$, $\frac{1}{96625944} a^{15} + \frac{11}{12078243} a^{14} + \frac{935}{211899} a^{13} + \frac{339195}{10736216} a^{12} + \frac{5800505}{24156486} a^{11} + \frac{4260565}{48312972} a^{10} + \frac{158647}{48312972} a^{9} - \frac{5566849}{24156486} a^{8} + \frac{2819645}{48312972} a^{7} - \frac{9867361}{48312972} a^{6} - \frac{88441}{326439} a^{5} + \frac{8031323}{48312972} a^{4} - \frac{1690997}{32208648} a^{3} - \frac{39841}{108813} a^{2} + \frac{12346459}{48312972} a + \frac{31542671}{96625944}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{993509}{652878} a^{15} - \frac{5755225}{652878} a^{14} + \frac{1744735}{72542} a^{13} - \frac{932855}{22908} a^{12} + \frac{14680940}{326439} a^{11} - \frac{17924615}{652878} a^{10} + \frac{16115495}{326439} a^{9} - \frac{231869225}{652878} a^{8} + \frac{385390030}{326439} a^{7} - \frac{1451143885}{652878} a^{6} + \frac{966762505}{326439} a^{5} - \frac{1885549915}{652878} a^{4} + \frac{133961985}{72542} a^{3} - \frac{64600495}{108813} a^{2} + \frac{68940295}{652878} a - \frac{10273687}{1305756} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4471.3211085 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4$ (as 16T9):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_4\times C_2$ |
| Character table for $D_4\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |