Normalized defining polynomial
\( x^{16} - 8 x^{15} + 28 x^{14} - 56 x^{13} + 82 x^{12} - 128 x^{11} + 158 x^{10} + 2 x^{9} - 120 x^{8} - 368 x^{7} + 506 x^{6} + 604 x^{5} - 433 x^{4} - 986 x^{3} - 72 x^{2} + 790 x + 541 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26873856000000000000=2^{24}\cdot 3^{8}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{29} a^{10} - \frac{5}{29} a^{9} + \frac{9}{29} a^{8} - \frac{6}{29} a^{7} - \frac{5}{29} a^{6} - \frac{14}{29} a^{5} + \frac{4}{29} a^{4} - \frac{1}{29} a^{3} - \frac{11}{29} a^{2} - \frac{1}{29} a + \frac{4}{29}$, $\frac{1}{29} a^{11} + \frac{13}{29} a^{9} + \frac{10}{29} a^{8} - \frac{6}{29} a^{7} - \frac{10}{29} a^{6} - \frac{8}{29} a^{5} - \frac{10}{29} a^{4} + \frac{13}{29} a^{3} + \frac{2}{29} a^{2} - \frac{1}{29} a - \frac{9}{29}$, $\frac{1}{29} a^{12} - \frac{12}{29} a^{9} - \frac{7}{29} a^{8} + \frac{10}{29} a^{7} - \frac{1}{29} a^{6} - \frac{2}{29} a^{5} - \frac{10}{29} a^{4} - \frac{14}{29} a^{3} - \frac{3}{29} a^{2} + \frac{4}{29} a + \frac{6}{29}$, $\frac{1}{551} a^{13} + \frac{3}{551} a^{12} + \frac{3}{551} a^{11} - \frac{2}{551} a^{10} + \frac{91}{551} a^{9} + \frac{225}{551} a^{8} - \frac{223}{551} a^{7} + \frac{2}{551} a^{6} + \frac{110}{551} a^{5} - \frac{237}{551} a^{4} - \frac{16}{551} a^{3} + \frac{94}{551} a^{2} - \frac{169}{551} a + \frac{2}{551}$, $\frac{1}{539429} a^{14} - \frac{7}{539429} a^{13} + \frac{8979}{539429} a^{12} + \frac{2020}{539429} a^{11} + \frac{5260}{539429} a^{10} + \frac{113125}{539429} a^{9} - \frac{181586}{539429} a^{8} - \frac{227516}{539429} a^{7} + \frac{266052}{539429} a^{6} + \frac{206}{1691} a^{5} - \frac{41897}{539429} a^{4} + \frac{163483}{539429} a^{3} - \frac{23909}{539429} a^{2} + \frac{73493}{539429} a + \frac{6211}{18601}$, $\frac{1}{204443591} a^{15} + \frac{182}{204443591} a^{14} - \frac{11497}{18585781} a^{13} - \frac{1009842}{204443591} a^{12} - \frac{387349}{204443591} a^{11} - \frac{1954068}{204443591} a^{10} + \frac{63048352}{204443591} a^{9} - \frac{83883975}{204443591} a^{8} - \frac{1390816}{18585781} a^{7} + \frac{88399356}{204443591} a^{6} + \frac{90666721}{204443591} a^{5} + \frac{33183793}{204443591} a^{4} + \frac{61107856}{204443591} a^{3} + \frac{41930901}{204443591} a^{2} - \frac{54556625}{204443591} a - \frac{9454479}{204443591}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{666308}{204443591} a^{15} + \frac{4997310}{204443591} a^{14} - \frac{18253460}{204443591} a^{13} + \frac{3895905}{18585781} a^{12} - \frac{78586880}{204443591} a^{11} + \frac{610368}{978199} a^{10} - \frac{157767755}{204443591} a^{9} + \frac{103002150}{204443591} a^{8} - \frac{37729460}{204443591} a^{7} + \frac{101766515}{204443591} a^{6} - \frac{190045228}{204443591} a^{5} + \frac{13758605}{18585781} a^{4} - \frac{9090945}{204443591} a^{3} - \frac{63312780}{204443591} a^{2} - \frac{77014375}{204443591} a + \frac{50467347}{204443591} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1146.87811803 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |