Normalized defining polynomial
\( x^{16} - 4 x^{15} + 14 x^{14} - 30 x^{13} + 41 x^{12} - 62 x^{11} + 45 x^{10} - 128 x^{9} + 267 x^{8} - 454 x^{7} + 1110 x^{6} - 1124 x^{5} + 1666 x^{4} - 1540 x^{3} + 1071 x^{2} - 798 x + 361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26873856000000000000=2^{24}\cdot 3^{8}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{27474} a^{14} - \frac{239}{4579} a^{13} - \frac{2069}{27474} a^{12} + \frac{1595}{13737} a^{11} + \frac{4937}{13737} a^{10} - \frac{2144}{13737} a^{9} - \frac{2845}{9158} a^{8} - \frac{2068}{13737} a^{7} + \frac{3073}{13737} a^{6} + \frac{6182}{13737} a^{5} - \frac{1999}{4579} a^{4} - \frac{1890}{4579} a^{3} - \frac{5131}{13737} a^{2} - \frac{6503}{13737} a - \frac{475}{1446}$, $\frac{1}{12754434692239806} a^{15} - \frac{15755822554}{2125739115373301} a^{14} - \frac{1700841035991073}{12754434692239806} a^{13} - \frac{592277838126173}{6377217346119903} a^{12} - \frac{751200758188061}{2125739115373301} a^{11} - \frac{396058893816431}{6377217346119903} a^{10} - \frac{2159561221216985}{12754434692239806} a^{9} - \frac{483584240210977}{6377217346119903} a^{8} - \frac{1711096416288554}{6377217346119903} a^{7} - \frac{2294511892842011}{6377217346119903} a^{6} + \frac{534470531442427}{2125739115373301} a^{5} - \frac{111388409689270}{6377217346119903} a^{4} + \frac{3170479386359923}{6377217346119903} a^{3} - \frac{554444734176579}{2125739115373301} a^{2} + \frac{32165052804613}{411433377169026} a - \frac{18045844430611}{335643018216837}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{39588464}{6140979987} a^{15} - \frac{425424005}{12281959974} a^{14} + \frac{718735085}{6140979987} a^{13} - \frac{1102067725}{4093986658} a^{12} + \frac{2207046845}{6140979987} a^{11} - \frac{2167136359}{6140979987} a^{10} + \frac{473539990}{2046993329} a^{9} - \frac{2229001775}{4093986658} a^{8} + \frac{14455901725}{6140979987} a^{7} - \frac{26757015230}{6140979987} a^{6} + \frac{48270245006}{6140979987} a^{5} - \frac{21114357805}{2046993329} a^{4} + \frac{48719748340}{6140979987} a^{3} - \frac{46854375710}{6140979987} a^{2} + \frac{20790331760}{6140979987} a + \frac{216648805}{646418946} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2522.8409077 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times D_4$ (as 16T19):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_4 \times D_4$ |
| Character table for $C_4 \times D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), 4.0.8000.2, 4.4.72000.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 4.0.9000.1, 4.0.9000.2, 8.0.81000000.1, 8.0.5184000000.3, 8.0.3240000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||