Normalized defining polynomial
\( x^{16} - 6 x^{15} + 18 x^{14} - 30 x^{13} + 41 x^{12} - 90 x^{11} + 252 x^{10} - 432 x^{9} + 426 x^{8} - 180 x^{7} + 90 x^{6} - 360 x^{5} + 740 x^{4} - 750 x^{3} + 450 x^{2} - 150 x + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26873856000000000000=2^{24}\cdot 3^{8}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{15} a^{12} - \frac{1}{15} a^{11} - \frac{2}{15} a^{10} + \frac{1}{15} a^{8} + \frac{1}{3} a^{7} + \frac{7}{15} a^{6} + \frac{1}{5} a^{5} + \frac{1}{15} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{13} + \frac{2}{15} a^{11} - \frac{2}{15} a^{10} + \frac{1}{15} a^{9} + \frac{1}{15} a^{8} + \frac{2}{15} a^{7} - \frac{1}{3} a^{6} + \frac{4}{15} a^{5} + \frac{1}{15} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{2715} a^{14} + \frac{41}{2715} a^{13} + \frac{26}{2715} a^{12} - \frac{19}{2715} a^{11} + \frac{296}{2715} a^{10} + \frac{109}{905} a^{9} - \frac{353}{2715} a^{8} - \frac{538}{2715} a^{7} + \frac{947}{2715} a^{6} - \frac{6}{905} a^{5} + \frac{164}{543} a^{4} - \frac{8}{543} a^{3} - \frac{4}{543} a^{2} - \frac{190}{543} a + \frac{103}{543}$, $\frac{1}{441852675} a^{15} + \frac{6434}{441852675} a^{14} - \frac{9829697}{441852675} a^{13} - \frac{2180897}{88370535} a^{12} - \frac{7088404}{441852675} a^{11} - \frac{340291}{8033685} a^{10} + \frac{756389}{147284225} a^{9} + \frac{19716566}{147284225} a^{8} - \frac{1936549}{441852675} a^{7} - \frac{12251153}{88370535} a^{6} - \frac{836515}{5891369} a^{5} + \frac{13942702}{29456845} a^{4} + \frac{1514864}{88370535} a^{3} - \frac{1748464}{5891369} a^{2} + \frac{6448910}{17674107} a + \frac{734824}{17674107}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{166561}{2441175} a^{15} - \frac{278692}{813725} a^{14} + \frac{2110513}{2441175} a^{13} - \frac{177557}{162745} a^{12} + \frac{1250562}{813725} a^{11} - \frac{40679}{8877} a^{10} + \frac{10188039}{813725} a^{9} - \frac{12919204}{813725} a^{8} + \frac{8480732}{813725} a^{7} - \frac{661736}{488235} a^{6} + \frac{1193204}{162745} a^{5} - \frac{3117899}{162745} a^{4} + \frac{13363714}{488235} a^{3} - \frac{1970674}{97647} a^{2} + \frac{1052639}{97647} a - \frac{78603}{32549} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2346.64862716 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |