Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 8 x^{13} - 8 x^{12} + 48 x^{11} - 48 x^{10} - 104 x^{9} + 445 x^{8} - 968 x^{7} + 1256 x^{6} - 1048 x^{5} + 828 x^{4} - 412 x^{3} + 180 x^{2} - 56 x + 11 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(268435456000000000000=2^{40}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{445} a^{13} - \frac{17}{445} a^{12} + \frac{146}{445} a^{11} - \frac{46}{445} a^{10} - \frac{26}{445} a^{9} - \frac{107}{445} a^{8} + \frac{202}{445} a^{7} - \frac{183}{445} a^{6} - \frac{26}{89} a^{5} - \frac{191}{445} a^{4} + \frac{2}{445} a^{3} + \frac{19}{445} a^{2} + \frac{96}{445} a - \frac{114}{445}$, $\frac{1}{4895} a^{14} - \frac{1}{979} a^{13} - \frac{414}{4895} a^{12} - \frac{31}{445} a^{11} - \frac{182}{445} a^{10} + \frac{26}{4895} a^{9} + \frac{1499}{4895} a^{8} - \frac{128}{445} a^{7} + \frac{96}{445} a^{6} + \frac{7}{89} a^{5} + \frac{24}{4895} a^{4} + \frac{329}{979} a^{3} - \frac{398}{979} a^{2} - \frac{742}{4895} a + \frac{86}{445}$, $\frac{1}{479944397075} a^{15} - \frac{120293}{8726261765} a^{14} + \frac{19796431}{36918799775} a^{13} - \frac{102577331}{15482077325} a^{12} - \frac{21454978027}{43631308825} a^{11} + \frac{19113120271}{95988879415} a^{10} - \frac{161136583563}{479944397075} a^{9} - \frac{5162987111}{479944397075} a^{8} - \frac{15203958554}{43631308825} a^{7} - \frac{236502651}{2296384675} a^{6} - \frac{16555156809}{95988879415} a^{5} - \frac{2210809983}{15482077325} a^{4} - \frac{99199962809}{479944397075} a^{3} - \frac{20685974463}{43631308825} a^{2} + \frac{132194825078}{479944397075} a + \frac{7584099671}{43631308825}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2652.85503182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T38):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-2}) \), 4.2.400.1, 4.2.1600.1, \(\Q(\sqrt{-2}, \sqrt{5})\), 8.2.1024000000.1, 8.2.1024000000.2, 8.0.40960000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |