Normalized defining polynomial
\( x^{16} - 8 x^{15} + 40 x^{14} - 140 x^{13} + 386 x^{12} - 860 x^{11} + 1576 x^{10} - 2380 x^{9} + 3001 x^{8} - 3180 x^{7} + 2820 x^{6} - 2052 x^{5} + 1196 x^{4} - 540 x^{3} + 180 x^{2} - 40 x + 5 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(268435456000000000000=2^{40}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2291} a^{14} - \frac{7}{2291} a^{13} - \frac{701}{2291} a^{12} - \frac{285}{2291} a^{11} - \frac{840}{2291} a^{10} - \frac{991}{2291} a^{9} + \frac{866}{2291} a^{8} - \frac{367}{2291} a^{7} - \frac{694}{2291} a^{6} - \frac{252}{2291} a^{5} + \frac{1071}{2291} a^{4} + \frac{707}{2291} a^{3} - \frac{689}{2291} a^{2} - \frac{110}{2291} a - \frac{515}{2291}$, $\frac{1}{460491} a^{15} + \frac{31}{153497} a^{14} + \frac{113149}{460491} a^{13} + \frac{36868}{153497} a^{12} + \frac{172268}{460491} a^{11} - \frac{188086}{460491} a^{10} - \frac{203620}{460491} a^{9} + \frac{20344}{153497} a^{8} + \frac{203161}{460491} a^{7} - \frac{49033}{460491} a^{6} - \frac{26420}{460491} a^{5} + \frac{204029}{460491} a^{4} - \frac{4155}{153497} a^{3} - \frac{76460}{153497} a^{2} - \frac{75623}{153497} a + \frac{214256}{460491}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{152612}{460491} a^{15} - \frac{381530}{153497} a^{14} + \frac{5537210}{460491} a^{13} - \frac{6210750}{153497} a^{12} + \frac{49753510}{460491} a^{11} - \frac{106880708}{460491} a^{10} + \frac{188381050}{460491} a^{9} - \frac{90567785}{153497} a^{8} + \frac{326718830}{460491} a^{7} - \frac{328395830}{460491} a^{6} + \frac{274192850}{460491} a^{5} - \frac{184697555}{460491} a^{4} + \frac{32696550}{153497} a^{3} - \frac{13007600}{153497} a^{2} + \frac{3801300}{153497} a - \frac{1876262}{460491} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11020.5408569 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), 4.2.8000.1 x2, 4.0.32000.1 x2, \(\Q(i, \sqrt{5})\), 8.0.1024000000.6, 8.0.16384000000.3 x2, 8.0.204800000.3 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |