Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{14} + 16 x^{13} - 36 x^{12} - 76 x^{11} + 408 x^{10} - 712 x^{9} + 691 x^{8} - 460 x^{7} + 368 x^{6} - 312 x^{5} + 204 x^{4} - 40 x^{3} + 8 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(268435456000000000000=2^{40}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{183} a^{14} - \frac{16}{61} a^{13} + \frac{32}{183} a^{12} + \frac{1}{61} a^{11} - \frac{1}{3} a^{10} + \frac{16}{183} a^{9} + \frac{3}{61} a^{8} - \frac{16}{61} a^{7} - \frac{32}{183} a^{6} - \frac{12}{61} a^{5} + \frac{5}{61} a^{4} - \frac{21}{61} a^{3} + \frac{27}{61} a^{2} - \frac{46}{183} a - \frac{67}{183}$, $\frac{1}{728544871155513} a^{15} - \frac{920020633696}{728544871155513} a^{14} - \frac{104395696526782}{728544871155513} a^{13} + \frac{113112391562500}{728544871155513} a^{12} + \frac{56051748475433}{728544871155513} a^{11} + \frac{231170961923684}{728544871155513} a^{10} + \frac{45057103093637}{728544871155513} a^{9} - \frac{11886173159772}{242848290385171} a^{8} + \frac{132502758313810}{728544871155513} a^{7} - \frac{162648913552984}{728544871155513} a^{6} + \frac{95872164717581}{242848290385171} a^{5} + \frac{120825673225489}{242848290385171} a^{4} + \frac{16615762940880}{242848290385171} a^{3} + \frac{75181305638816}{728544871155513} a^{2} + \frac{36947810420051}{242848290385171} a - \frac{65752878945761}{728544871155513}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{42721846858}{103736988631} a^{15} + \frac{553185840820}{311210965893} a^{14} - \frac{226275078280}{103736988631} a^{13} - \frac{1877178247045}{311210965893} a^{12} + \frac{1753457451480}{103736988631} a^{11} + \frac{8215497001418}{311210965893} a^{10} - \frac{55314769018880}{311210965893} a^{9} + \frac{36060036446920}{103736988631} a^{8} - \frac{39518439769580}{103736988631} a^{7} + \frac{88337624721220}{311210965893} a^{6} - \frac{22359251571144}{103736988631} a^{5} + \frac{18717569141210}{103736988631} a^{4} - \frac{13338462962210}{103736988631} a^{3} + \frac{4557878596410}{103736988631} a^{2} - \frac{1984935653800}{311210965893} a - \frac{878668725724}{311210965893} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6060.05248189 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \), 4.0.32000.1 x2, \(\Q(i, \sqrt{5})\), 4.2.8000.1 x2, 8.0.16384000000.2 x2, 8.0.204800000.2 x2, 8.0.1024000000.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |