Normalized defining polynomial
\( x^{16} - 7 x^{15} + 29 x^{14} - 51 x^{13} - 226 x^{12} + 2110 x^{11} - 9063 x^{10} + 24548 x^{9} - 27087 x^{8} - 78822 x^{7} + 678517 x^{6} - 2495735 x^{5} + 6626619 x^{4} - 12197136 x^{3} + 15383004 x^{2} - 10598192 x + 8249296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(267013006026455298095703125=5^{12}\cdot 101^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{5} a^{10} - \frac{1}{5}$, $\frac{1}{25} a^{11} - \frac{2}{25} a^{10} - \frac{1}{25} a^{9} - \frac{1}{25} a^{8} + \frac{4}{25} a^{7} - \frac{1}{25} a^{6} + \frac{9}{25} a^{5} - \frac{1}{25} a^{4} - \frac{11}{25} a^{3} - \frac{1}{25} a^{2} - \frac{7}{25} a + \frac{1}{25}$, $\frac{1}{25} a^{12} + \frac{2}{25} a^{9} + \frac{2}{25} a^{8} + \frac{12}{25} a^{7} + \frac{7}{25} a^{6} - \frac{3}{25} a^{5} + \frac{12}{25} a^{4} + \frac{7}{25} a^{3} - \frac{9}{25} a^{2} - \frac{8}{25} a - \frac{3}{25}$, $\frac{1}{150} a^{13} - \frac{1}{150} a^{12} - \frac{1}{150} a^{11} - \frac{1}{150} a^{10} + \frac{1}{25} a^{9} - \frac{2}{75} a^{8} - \frac{29}{150} a^{7} + \frac{13}{75} a^{6} + \frac{61}{150} a^{5} + \frac{28}{75} a^{4} - \frac{1}{6} a^{3} - \frac{21}{50} a^{2} + \frac{67}{150} a - \frac{4}{75}$, $\frac{1}{27000} a^{14} - \frac{23}{9000} a^{13} + \frac{151}{27000} a^{12} - \frac{209}{27000} a^{11} + \frac{97}{3375} a^{10} - \frac{179}{13500} a^{9} + \frac{359}{9000} a^{8} + \frac{1177}{4500} a^{7} + \frac{2899}{9000} a^{6} + \frac{11}{2250} a^{5} - \frac{9359}{27000} a^{4} - \frac{3829}{27000} a^{3} - \frac{12539}{27000} a^{2} + \frac{403}{13500} a + \frac{589}{6750}$, $\frac{1}{1285961683278276995286209829809668038000} a^{15} - \frac{17835144035080091046263795143299989}{1285961683278276995286209829809668038000} a^{14} - \frac{2790979310908615680311352425748375569}{1285961683278276995286209829809668038000} a^{13} + \frac{6552762893371937745632052990065036591}{1285961683278276995286209829809668038000} a^{12} - \frac{444898512840344254347376612776244103}{26790868401630770735129371454368084125} a^{11} + \frac{23630307063649855625325818603582349161}{642980841639138497643104914904834019000} a^{10} + \frac{26008088284387472601945263832155826077}{1285961683278276995286209829809668038000} a^{9} + \frac{5312276310884240278847104100736243377}{214326947213046165881034971634944673000} a^{8} - \frac{30507810501223891714577167993024203167}{142884631475364110587356647756629782000} a^{7} - \frac{2543654218440258731614618037650180763}{35721157868841027646839161939157445500} a^{6} + \frac{370918571597338769544047112914787891241}{1285961683278276995286209829809668038000} a^{5} + \frac{4024134143929250154521856068027213209}{12989511952305828235214240705148162000} a^{4} + \frac{42227268241017800022005018388475883509}{142884631475364110587356647756629782000} a^{3} - \frac{73669256388031932164355869225189954699}{214326947213046165881034971634944673000} a^{2} + \frac{10868484373197656006974200646363167341}{35721157868841027646839161939157445500} a + \frac{368715787132134188673593071878879814}{1461320094634405676461602079329168225}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{194961824280181887043049071}{29952756231297067414022076952686000} a^{15} + \frac{112023367034287647116221691}{665616805139934831422712821170800} a^{14} - \frac{900840679365688591843856681}{5990551246259413482804415390537200} a^{13} - \frac{16517746310809648250614392857}{5990551246259413482804415390537200} a^{12} + \frac{17245960982218291148575134641}{1497637811564853370701103847634300} a^{11} - \frac{756281081476524417670156170883}{14976378115648533707011038476343000} a^{10} + \frac{10215102216210804834771365573}{133123361027986966284542564234160} a^{9} + \frac{19451941576491216144356935771}{39937008308396089885362769270248} a^{8} - \frac{165776253788450792200435019105}{79874016616792179770725538540496} a^{7} + \frac{345108023308801862482034568881}{49921260385495112356703461587810} a^{6} - \frac{373989132037306871106879498775279}{29952756231297067414022076952686000} a^{5} - \frac{6796836874300191013008707344669}{5990551246259413482804415390537200} a^{4} + \frac{424563670661120496348515531231341}{5990551246259413482804415390537200} a^{3} - \frac{1205603692882525846264545403762919}{2995275623129706741402207695268600} a^{2} + \frac{1102999032864583255443149039048149}{1497637811564853370701103847634300} a + \frac{227675945795020712187783252836392}{624015754818688904458793269847625} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3925602.28351 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1281 |
| Character table for t16n1281 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.159390625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $101$ | 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.2 | $x^{4} - 101 x^{2} + 30603$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 101.4.3.3 | $x^{4} + 202$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |