Normalized defining polynomial
\( x^{16} - x^{15} - 43 x^{14} + 72 x^{13} + 1035 x^{12} - 2082 x^{11} - 16213 x^{10} + 30231 x^{9} + 164376 x^{8} - 257335 x^{7} - 1035255 x^{6} + 1467105 x^{5} + 4084295 x^{4} - 5525450 x^{3} - 10235150 x^{2} + 9449200 x + 15073775 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2643693128974804931640625=5^{12}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{4}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{5}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{6}$, $\frac{1}{15} a^{12} - \frac{1}{15} a^{9} - \frac{7}{15} a^{7} + \frac{1}{3} a^{6} - \frac{1}{5} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{15} a^{13} - \frac{1}{15} a^{10} - \frac{1}{15} a^{8} + \frac{2}{15} a^{7} - \frac{2}{5} a^{6} - \frac{4}{15} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{825} a^{14} - \frac{17}{825} a^{13} + \frac{1}{165} a^{11} + \frac{4}{165} a^{10} - \frac{82}{825} a^{9} - \frac{1}{75} a^{8} + \frac{5}{33} a^{7} + \frac{4}{55} a^{6} + \frac{58}{165} a^{5} + \frac{1}{5} a^{4} + \frac{7}{33} a^{3} - \frac{1}{3} a^{2} - \frac{14}{33} a - \frac{5}{11}$, $\frac{1}{13281210183334739443370737635860813302140075} a^{15} + \frac{522366966889414181779608883036541486922}{4427070061111579814456912545286937767380025} a^{14} + \frac{45357922490717140639329442269824405407813}{4427070061111579814456912545286937767380025} a^{13} + \frac{28811965098375603200457536707129510061374}{2656242036666947888674147527172162660428015} a^{12} + \frac{45659957851911360903553498964437299877473}{885414012222315962891382509057387553476005} a^{11} + \frac{337957481246309226461028614989218278836313}{13281210183334739443370737635860813302140075} a^{10} + \frac{261194498031324899280932804192770121520113}{13281210183334739443370737635860813302140075} a^{9} - \frac{378321107909000350168703655192955910617436}{4427070061111579814456912545286937767380025} a^{8} - \frac{17566758033581207483618152561289689543599}{885414012222315962891382509057387553476005} a^{7} - \frac{49663977952452817401878134371963895076086}{241476548787904353515831593379287514584365} a^{6} + \frac{326418332734040616917738653462383164603696}{2656242036666947888674147527172162660428015} a^{5} + \frac{182306840043454790433232432016760035295871}{885414012222315962891382509057387553476005} a^{4} - \frac{243171900484545171796099987201111022894093}{531248407333389577734829505434432532085603} a^{3} - \frac{38737967488485688417455373456289342659173}{177082802444463192578276501811477510695201} a^{2} - \frac{23480877875137414010985981621773986543360}{177082802444463192578276501811477510695201} a + \frac{804844330781815829886598905811055769060}{177082802444463192578276501811477510695201}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{65964514256728339351188718751160629}{885414012222315962891382509057387553476005} a^{15} - \frac{946641493926981138114668479660435641}{885414012222315962891382509057387553476005} a^{14} - \frac{782444092565008892690672748773316799}{177082802444463192578276501811477510695201} a^{13} + \frac{42867959730139207728319618652398894352}{885414012222315962891382509057387553476005} a^{12} + \frac{71156326882630013500807613111969954701}{885414012222315962891382509057387553476005} a^{11} - \frac{1093745119445633195002580397794370246284}{885414012222315962891382509057387553476005} a^{10} - \frac{684379800177655846870728468512232118218}{885414012222315962891382509057387553476005} a^{9} + \frac{3445629827318667223844386735607680911190}{177082802444463192578276501811477510695201} a^{8} + \frac{4580030997892105413195385471968555495921}{885414012222315962891382509057387553476005} a^{7} - \frac{14575392837867931433999210058146871283112}{80492182929301451171943864459762504861455} a^{6} - \frac{12774428979897304304641015235071550264903}{885414012222315962891382509057387553476005} a^{5} + \frac{172610023225095022760060545486020070522537}{177082802444463192578276501811477510695201} a^{4} - \frac{41876258166824759713240086121107483809747}{177082802444463192578276501811477510695201} a^{3} - \frac{556272071195442578100256569684882210896825}{177082802444463192578276501811477510695201} a^{2} + \frac{240812001592749226466712928854131815267313}{177082802444463192578276501811477510695201} a + \frac{875337467778966069110209289616691912542674}{177082802444463192578276501811477510695201} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 414754.628528 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.1578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||