Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} - 16 x^{13} + 13 x^{12} + 26 x^{11} - 41 x^{10} + 132 x^{9} + 1248 x^{8} - 7494 x^{7} + 16866 x^{6} - 5228 x^{5} - 25822 x^{4} + 52382 x^{3} - 14591 x^{2} - 27978 x + 119201 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2643693128974804931640625=5^{12}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{1}{10} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{10} a + \frac{1}{10}$, $\frac{1}{10} a^{9} - \frac{3}{10} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} - \frac{1}{10} a^{2} + \frac{3}{10} a + \frac{1}{5}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{3}{10} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{3}{10}$, $\frac{1}{10} a^{11} - \frac{1}{2} a^{7} + \frac{1}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{12} + \frac{1}{5} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{5} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{3}{10} a^{5} - \frac{3}{10} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{3550} a^{14} - \frac{33}{1775} a^{13} + \frac{13}{355} a^{12} - \frac{13}{3550} a^{11} + \frac{42}{1775} a^{10} - \frac{103}{3550} a^{9} - \frac{6}{1775} a^{8} + \frac{133}{355} a^{7} - \frac{113}{1775} a^{6} - \frac{651}{1775} a^{5} - \frac{707}{3550} a^{4} + \frac{1707}{3550} a^{3} + \frac{37}{142} a^{2} - \frac{329}{3550} a + \frac{427}{3550}$, $\frac{1}{1018404772461505702031709343550} a^{15} - \frac{38768628125909268524511053}{1018404772461505702031709343550} a^{14} + \frac{11292952930409546685364308806}{509202386230752851015854671775} a^{13} - \frac{22101257259128600968006507513}{1018404772461505702031709343550} a^{12} + \frac{2406788662915966679393225258}{101840477246150570203170934355} a^{11} + \frac{507351322265890569285123847}{509202386230752851015854671775} a^{10} + \frac{18465357310389878604871136997}{509202386230752851015854671775} a^{9} - \frac{2154329955588108870128790938}{509202386230752851015854671775} a^{8} + \frac{375006897871210625726569389509}{1018404772461505702031709343550} a^{7} + \frac{27845257706351033409976943093}{101840477246150570203170934355} a^{6} - \frac{266063106604493103386067633053}{1018404772461505702031709343550} a^{5} - \frac{177879513755882160113327761829}{1018404772461505702031709343550} a^{4} - \frac{210541691179501728244034331357}{509202386230752851015854671775} a^{3} + \frac{379202249250007069490216118111}{1018404772461505702031709343550} a^{2} - \frac{10047248309901550627066584171}{20368095449230114040634186871} a + \frac{25512071369307373446796149351}{1018404772461505702031709343550}$
Class group and class number
$C_{2}\times C_{2}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8578.62068889 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 4.0.1275125.2, 4.0.12625.1, 8.4.31878125.1, 8.4.325188753125.3, 8.0.1625943765625.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||