Normalized defining polynomial
\( x^{16} - 2 x^{15} - 23 x^{13} + 125 x^{12} - 260 x^{11} + 963 x^{10} - 3622 x^{9} + 8437 x^{8} - 18634 x^{7} + 46977 x^{6} - 86449 x^{5} + 134228 x^{4} - 202915 x^{3} + 242291 x^{2} - 166837 x + 101761 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2643693128974804931640625=5^{12}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{355} a^{14} + \frac{28}{355} a^{13} - \frac{31}{355} a^{12} - \frac{136}{355} a^{11} - \frac{20}{71} a^{10} - \frac{108}{355} a^{9} + \frac{24}{71} a^{8} - \frac{171}{355} a^{7} + \frac{35}{71} a^{6} + \frac{18}{355} a^{5} - \frac{112}{355} a^{4} + \frac{18}{71} a^{3} - \frac{33}{355} a^{2} - \frac{141}{355} a - \frac{17}{71}$, $\frac{1}{19629152629340496961820125756788155} a^{15} + \frac{27004569283930014685718290193733}{19629152629340496961820125756788155} a^{14} + \frac{1145747080686274869372040998162}{61533393822384003015110112090245} a^{13} - \frac{256047049631324880175426329693016}{19629152629340496961820125756788155} a^{12} + \frac{8543393961175461601353172501638723}{19629152629340496961820125756788155} a^{11} + \frac{8791978494431540049203739712768787}{19629152629340496961820125756788155} a^{10} - \frac{3666753175196931742891892113549089}{19629152629340496961820125756788155} a^{9} + \frac{6049893640702169498383272291745558}{19629152629340496961820125756788155} a^{8} - \frac{388367896795001519523886947013103}{1784468420849136087438193250617105} a^{7} - \frac{640507691787765486975452613737849}{1784468420849136087438193250617105} a^{6} + \frac{8359665816310658309424820581632562}{19629152629340496961820125756788155} a^{5} + \frac{24819010538910715517957582014854}{61533393822384003015110112090245} a^{4} + \frac{2647647829047505378121270340565947}{19629152629340496961820125756788155} a^{3} + \frac{74782955701257176021500993972981}{276466938441415450166480644461805} a^{2} - \frac{1310077672250090783036961474892556}{3925830525868099392364025151357631} a - \frac{21444604387100704619201943591179}{61533393822384003015110112090245}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{847103953440099303420734080}{55293387688283090033296128892361} a^{15} + \frac{2062405814058521806287496858}{276466938441415450166480644461805} a^{14} - \frac{44600087558698585260378842}{866667518625126803029719888595} a^{13} - \frac{106790104746250753487493650424}{276466938441415450166480644461805} a^{12} + \frac{285678760312933872993306576489}{276466938441415450166480644461805} a^{11} - \frac{37061123937471433418695913363}{276466938441415450166480644461805} a^{10} + \frac{1974835453509549645682948987461}{276466938441415450166480644461805} a^{9} - \frac{6407874060135893950706020002169}{276466938441415450166480644461805} a^{8} + \frac{523506156998150076932794859812}{25133358040128677287861876769255} a^{7} - \frac{1474058883572718267926658003483}{25133358040128677287861876769255} a^{6} + \frac{49389875978946373892024463160249}{276466938441415450166480644461805} a^{5} - \frac{51355883729403195616142323588}{866667518625126803029719888595} a^{4} + \frac{21170874246333923980560771853044}{276466938441415450166480644461805} a^{3} + \frac{4949335027148251004306975153831}{276466938441415450166480644461805} a^{2} - \frac{176743332429582742058971029112837}{276466938441415450166480644461805} a + \frac{823858200972408222714458105348}{866667518625126803029719888595} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 430477.21164 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.2525.1, 4.0.12625.1, 8.4.325188753125.4, 8.4.325188753125.5, 8.0.159390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |