Normalized defining polynomial
\( x^{16} - x^{15} - 4 x^{14} + 13 x^{13} + 7 x^{12} - 331 x^{11} + 547 x^{10} + 1543 x^{9} - 2989 x^{8} - 17 x^{7} + 7937 x^{6} - 34826 x^{5} + 68112 x^{4} - 59067 x^{3} + 37016 x^{2} - 24321 x + 14641 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2643693128974804931640625=5^{12}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{9} + \frac{1}{5} a^{6} - \frac{1}{5} a^{3} + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{10} + \frac{1}{5} a^{7} - \frac{1}{5} a^{4} + \frac{1}{5} a$, $\frac{1}{2665} a^{14} - \frac{152}{2665} a^{13} + \frac{177}{2665} a^{12} + \frac{359}{2665} a^{11} - \frac{823}{2665} a^{10} + \frac{118}{2665} a^{9} + \frac{571}{2665} a^{8} - \frac{1122}{2665} a^{7} - \frac{1168}{2665} a^{6} + \frac{1234}{2665} a^{5} + \frac{1052}{2665} a^{4} + \frac{1213}{2665} a^{3} - \frac{929}{2665} a^{2} - \frac{967}{2665} a + \frac{1302}{2665}$, $\frac{1}{17349085844052218597939334009616915} a^{15} - \frac{1820318247462295846258099847357}{17349085844052218597939334009616915} a^{14} + \frac{826317354366692095926498243365752}{17349085844052218597939334009616915} a^{13} - \frac{1457490369191101315989275953630197}{17349085844052218597939334009616915} a^{12} + \frac{489965560493171915914796636456147}{17349085844052218597939334009616915} a^{11} - \frac{2010285310021546846335396303096517}{17349085844052218597939334009616915} a^{10} - \frac{4083039314745652381293565851510868}{17349085844052218597939334009616915} a^{9} + \frac{741627081247602267057705170374198}{17349085844052218597939334009616915} a^{8} + \frac{3324778533381367306849827337197657}{17349085844052218597939334009616915} a^{7} + \frac{7259769712580130777480170654697913}{17349085844052218597939334009616915} a^{6} - \frac{8535062798474497428588157636391693}{17349085844052218597939334009616915} a^{5} - \frac{17668532138362380264266678381572}{1577189622186565327085394000874265} a^{4} - \frac{357435657674226018643846122634878}{1577189622186565327085394000874265} a^{3} + \frac{2933943656668253075706646498731308}{17349085844052218597939334009616915} a^{2} + \frac{204106136763667637907835442273099}{1334545064927093738303025693047455} a + \frac{25960637189281209630822646540379}{143380874744233211553217636443115}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5096245762055653439456216184}{423148435220785819461934975844315} a^{15} + \frac{28579301506987540856653539}{32549879632368139958610382757255} a^{14} - \frac{22337611686420350964757320362}{423148435220785819461934975844315} a^{13} + \frac{21636746212590215285951115981}{423148435220785819461934975844315} a^{12} + \frac{69545812745518403737376222508}{423148435220785819461934975844315} a^{11} - \frac{1536037915468365718991568682248}{423148435220785819461934975844315} a^{10} + \frac{902927559732341950432435972824}{423148435220785819461934975844315} a^{9} + \frac{721136225146769125718696079814}{32549879632368139958610382757255} a^{8} + \frac{1096763820820527794739034342308}{423148435220785819461934975844315} a^{7} - \frac{8409482878401610048232882803689}{423148435220785819461934975844315} a^{6} - \frac{4807254955544054714403236064117}{423148435220785819461934975844315} a^{5} - \frac{12889261682875351488657695882343}{38468039565525983587448634167665} a^{4} + \frac{16752029274958115786282650353764}{38468039565525983587448634167665} a^{3} - \frac{200309332027162039586636030449713}{423148435220785819461934975844315} a^{2} + \frac{616767244729854125179999807568898}{423148435220785819461934975844315} a - \frac{195983203371972639585787934978}{699418901191381519771793348503} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 155135.805875 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T158):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, \(\Q(\zeta_{5})\), 4.0.12625.1, 8.4.325188753125.3 x2, 8.0.16098453125.4 x2, 8.0.159390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||