Normalized defining polynomial
\( x^{16} - 4 x^{15} - 8 x^{14} + 11 x^{13} + 53 x^{12} + 276 x^{11} + 161 x^{10} - 4162 x^{9} + 8038 x^{8} - 17579 x^{7} + 69244 x^{6} - 165310 x^{5} + 224283 x^{4} - 187268 x^{3} + 99078 x^{2} - 31174 x + 4481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2643693128974804931640625=5^{12}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{451} a^{14} - \frac{219}{451} a^{13} + \frac{59}{451} a^{12} + \frac{115}{451} a^{11} + \frac{172}{451} a^{10} - \frac{204}{451} a^{9} + \frac{59}{451} a^{8} + \frac{95}{451} a^{7} - \frac{171}{451} a^{6} - \frac{213}{451} a^{5} + \frac{135}{451} a^{4} - \frac{26}{451} a^{3} - \frac{193}{451} a^{2} + \frac{158}{451} a + \frac{67}{451}$, $\frac{1}{40866345881373407406872150630021} a^{15} - \frac{8078616773910818777788329780}{40866345881373407406872150630021} a^{14} + \frac{1774202173389496161692487774176}{3715122352852127946079286420911} a^{13} - \frac{575595641991450666840992747518}{3715122352852127946079286420911} a^{12} - \frac{15734815300917091996207124253645}{40866345881373407406872150630021} a^{11} - \frac{16603040430633969488710405242152}{40866345881373407406872150630021} a^{10} + \frac{8221088108589381591297104923479}{40866345881373407406872150630021} a^{9} + \frac{7587578667464810829262559063306}{40866345881373407406872150630021} a^{8} - \frac{16694061148303899243931420196066}{40866345881373407406872150630021} a^{7} + \frac{1363527114749700716214626704651}{40866345881373407406872150630021} a^{6} + \frac{13267092637750419948294138097210}{40866345881373407406872150630021} a^{5} - \frac{4796522683887289984443133900894}{40866345881373407406872150630021} a^{4} - \frac{5967431839416277029071862484665}{40866345881373407406872150630021} a^{3} + \frac{18430798840753342398287080791429}{40866345881373407406872150630021} a^{2} + \frac{5726841594386033411380434404375}{40866345881373407406872150630021} a - \frac{9082015605565897354382158538406}{40866345881373407406872150630021}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{515547728719676720412478929}{150798324285510728438642622251} a^{15} - \frac{143939081866973915191428972}{13708938571410066221694783841} a^{14} - \frac{5441130799674299294827856989}{150798324285510728438642622251} a^{13} + \frac{246753100771927072614009140}{150798324285510728438642622251} a^{12} + \frac{25628444397211843931057187959}{150798324285510728438642622251} a^{11} + \frac{164948872002328199003923312028}{150798324285510728438642622251} a^{10} + \frac{243849735295167742736438545153}{150798324285510728438642622251} a^{9} - \frac{1863511595119265304513288839993}{150798324285510728438642622251} a^{8} + \frac{2522221099431816888204701676539}{150798324285510728438642622251} a^{7} - \frac{7224117204767819086131476669509}{150798324285510728438642622251} a^{6} + \frac{29340141790808627056810843480890}{150798324285510728438642622251} a^{5} - \frac{59807892528715995574712514519186}{150798324285510728438642622251} a^{4} + \frac{67600125961883772389131144946551}{150798324285510728438642622251} a^{3} - \frac{45955723429481862535843099240108}{150798324285510728438642622251} a^{2} + \frac{18718433438262287316236993144394}{150798324285510728438642622251} a - \frac{3615857000030092635887875040591}{150798324285510728438642622251} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 318080.298133 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T157):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.16098453125.4 x2, 8.0.159390625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $101$ | 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |