Normalized defining polynomial
\( x^{16} - 8 x^{14} + 78 x^{12} + 94 x^{10} - 295 x^{8} + 54 x^{6} + 2413 x^{4} - 3573 x^{2} + 3136 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2643693128974804931640625=5^{12}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{2}{5} a^{6} + \frac{1}{10} a^{4} + \frac{1}{10} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{10} a^{9} - \frac{2}{5} a^{7} + \frac{1}{10} a^{5} + \frac{1}{10} a^{3} - \frac{1}{2} a^{2} - \frac{2}{5} a$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5}$, $\frac{1}{10} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{2}{5} a$, $\frac{1}{10} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{70} a^{13} + \frac{1}{35} a^{11} - \frac{5}{14} a^{7} - \frac{1}{2} a^{6} + \frac{3}{14} a^{5} + \frac{29}{70} a^{3} - \frac{1}{2} a^{2} + \frac{4}{35} a$, $\frac{1}{80034400950} a^{14} - \frac{201808112}{13339066825} a^{12} - \frac{1343972}{1905580975} a^{10} - \frac{63296708}{8003440095} a^{8} - \frac{1}{2} a^{7} + \frac{7998321719}{16006880190} a^{6} - \frac{8867567453}{40017200475} a^{4} - \frac{1}{2} a^{3} + \frac{26255266367}{80034400950} a^{2} - \frac{1}{2} a + \frac{457268621}{5716742925}$, $\frac{1}{640275207600} a^{15} - \frac{25226014}{13339066825} a^{13} + \frac{379772223}{15244647800} a^{11} + \frac{1537391311}{64027520760} a^{9} + \frac{11199697757}{128055041520} a^{7} - \frac{1}{2} a^{6} - \frac{40881327833}{320137603800} a^{5} - \frac{1}{2} a^{4} - \frac{277875457243}{640275207600} a^{3} + \frac{40931737717}{91467886800} a - \frac{1}{2}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 216649.138533 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{101}) \), \(\Q(\sqrt{505}) \), 4.0.1275125.1 x2, \(\Q(\sqrt{5}, \sqrt{101})\), 4.0.12625.1 x2, 8.0.1625943765625.1 x2, 8.0.1625943765625.5, 8.4.325188753125.2 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |