Normalized defining polynomial
\( x^{16} - 5 x^{15} + 22 x^{14} - 83 x^{13} + 392 x^{12} - 717 x^{11} + 1364 x^{10} - 2969 x^{9} + 4036 x^{8} - 8051 x^{7} + 24446 x^{6} - 66537 x^{5} + 178753 x^{4} - 353640 x^{3} + 572700 x^{2} - 666000 x + 360000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26382542843244145338070455141=3^{7}\cdot 47^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{3}{16} a^{6} + \frac{3}{16} a^{5} - \frac{5}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} + \frac{1}{16} a^{6} + \frac{1}{8} a^{5} - \frac{3}{16} a^{4} - \frac{1}{2} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{48} a^{12} + \frac{1}{48} a^{11} - \frac{1}{48} a^{8} - \frac{1}{16} a^{7} + \frac{1}{8} a^{6} - \frac{1}{6} a^{5} + \frac{7}{48} a^{4} - \frac{5}{16} a^{3} + \frac{1}{3} a^{2} - \frac{1}{4} a$, $\frac{1}{960} a^{13} - \frac{1}{192} a^{12} - \frac{3}{160} a^{11} - \frac{3}{160} a^{10} - \frac{13}{960} a^{9} + \frac{11}{320} a^{8} - \frac{1}{160} a^{7} + \frac{53}{480} a^{6} + \frac{61}{960} a^{5} + \frac{53}{320} a^{4} - \frac{29}{60} a^{3} - \frac{11}{80} a^{2} - \frac{1}{5} a$, $\frac{1}{139200} a^{14} + \frac{11}{27840} a^{13} - \frac{113}{23200} a^{12} - \frac{323}{23200} a^{11} - \frac{3013}{139200} a^{10} + \frac{1951}{46400} a^{9} + \frac{449}{23200} a^{8} + \frac{1973}{69600} a^{7} + \frac{24421}{139200} a^{6} + \frac{2153}{46400} a^{5} + \frac{1759}{34800} a^{4} - \frac{1471}{11600} a^{3} - \frac{683}{5800} a^{2} + \frac{151}{580} a + \frac{6}{29}$, $\frac{1}{248401544940652622189544000} a^{15} + \frac{70757182049688745981}{24840154494065262218954400} a^{14} + \frac{110522885789796646754647}{248401544940652622189544000} a^{13} + \frac{80201461914720161154809}{31050193117581577773693000} a^{12} + \frac{2248769998385407096868897}{248401544940652622189544000} a^{11} + \frac{663034576638248907549173}{41400257490108770364924000} a^{10} - \frac{311588697492743369649091}{248401544940652622189544000} a^{9} - \frac{781862810519096260630349}{15525096558790788886846500} a^{8} - \frac{9018840056534669026732649}{248401544940652622189544000} a^{7} - \frac{24012217384606316412861943}{124200772470326311094772000} a^{6} + \frac{8391007119866520029661581}{248401544940652622189544000} a^{5} - \frac{64961372845505076206759}{350849639746684494618000} a^{4} + \frac{8152785647809791358145381}{31050193117581577773693000} a^{3} - \frac{62318225332922474489882}{258751609313179814780775} a^{2} - \frac{44795128993980358045039}{207001287450543851824620} a - \frac{479867373341992587226}{3450021457509064197077}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 397627138.337 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 4.0.311469.1, 8.0.13678824252501.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47 | Data not computed | ||||||