Normalized defining polynomial
\( x^{16} + 8 x^{14} + 154 x^{12} - 560 x^{11} + 2612 x^{10} - 5160 x^{9} + 19376 x^{8} - 26560 x^{7} + 146320 x^{6} - 187680 x^{5} + 763220 x^{4} - 576800 x^{3} + 1760200 x^{2} - 463200 x + 2052900 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(263471075369680896000000000000=2^{40}\cdot 3^{4}\cdot 5^{12}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} + \frac{3}{10} a^{4}$, $\frac{1}{60} a^{13} - \frac{1}{60} a^{12} - \frac{1}{30} a^{11} - \frac{2}{15} a^{10} + \frac{1}{15} a^{9} - \frac{7}{30} a^{8} - \frac{7}{15} a^{7} + \frac{2}{15} a^{6} + \frac{13}{30} a^{5} + \frac{7}{30} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{76260} a^{14} + \frac{509}{76260} a^{13} - \frac{199}{15252} a^{12} - \frac{587}{19065} a^{11} + \frac{260}{3813} a^{10} - \frac{1301}{19065} a^{9} + \frac{571}{3813} a^{8} - \frac{8623}{19065} a^{7} - \frac{493}{7626} a^{6} - \frac{683}{38130} a^{5} + \frac{4541}{38130} a^{4} + \frac{23}{123} a^{3} - \frac{332}{3813} a^{2} - \frac{605}{1271} a + \frac{575}{1271}$, $\frac{1}{2008134431298370476775330950576780} a^{15} - \frac{980734844049827897532963899}{167344535941530873064610912548065} a^{14} - \frac{3572694129622908607456380165707}{1004067215649185238387665475288390} a^{13} - \frac{5075396644623914644962705673043}{334689071883061746129221825096130} a^{12} - \frac{59940614953995559335814726573868}{502033607824592619193832737644195} a^{11} - \frac{65508287845596079372051349031716}{502033607824592619193832737644195} a^{10} - \frac{90949619342086717020053809132613}{1004067215649185238387665475288390} a^{9} + \frac{81579965076381913068618833834963}{334689071883061746129221825096130} a^{8} - \frac{279030658982476216779703985115569}{1004067215649185238387665475288390} a^{7} - \frac{25157650382828643228831600538162}{71719086832084659884833248234885} a^{6} - \frac{10520445782069751980728313469098}{502033607824592619193832737644195} a^{5} - \frac{19743639618386545554395266157024}{55781511980510291021536970849355} a^{4} + \frac{520278746011908374606601425185}{100406721564918523838766547528839} a^{3} + \frac{23427444646717547537840302121552}{100406721564918523838766547528839} a^{2} - \frac{4720376586905391747060853963360}{14343817366416931976966649646977} a + \frac{16652208914440366973260963896412}{33468907188306174612922182509613}$
Class group and class number
$C_{2}\times C_{48}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2196592.73015 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^4$ (as 16T459):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^4.C_2^4$ |
| Character table for $C_2^4.C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.118000.1, 4.0.472000.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.3564544000000.19 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $59$ | 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |