Normalized defining polynomial
\( x^{16} + 680 x^{14} + 179180 x^{12} + 23004400 x^{10} + 1481016625 x^{8} + 44275956000 x^{6} + 526005432000 x^{4} + 1443242880000 x^{2} + 1082432160000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(262686006513622818702917369856000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $387.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4080=2^{4}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4080}(1,·)$, $\chi_{4080}(2053,·)$, $\chi_{4080}(3841,·)$, $\chi_{4080}(2843,·)$, $\chi_{4080}(3277,·)$, $\chi_{4080}(1871,·)$, $\chi_{4080}(4067,·)$, $\chi_{4080}(409,·)$, $\chi_{4080}(1883,·)$, $\chi_{4080}(157,·)$, $\chi_{4080}(1631,·)$, $\chi_{4080}(3107,·)$, $\chi_{4080}(2279,·)$, $\chi_{4080}(169,·)$, $\chi_{4080}(2039,·)$, $\chi_{4080}(3013,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{85} a^{4}$, $\frac{1}{85} a^{5}$, $\frac{1}{255} a^{6} + \frac{1}{255} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{255} a^{7} + \frac{1}{255} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{21675} a^{8} + \frac{1}{255} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{43350} a^{9} - \frac{1}{255} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{1127100} a^{10} + \frac{1}{93925} a^{8} - \frac{2}{1105} a^{6} + \frac{2}{1105} a^{4} - \frac{35}{156} a^{2} + \frac{4}{13}$, $\frac{1}{2254200} a^{11} + \frac{1}{187850} a^{9} + \frac{7}{6630} a^{7} - \frac{2}{663} a^{5} - \frac{29}{104} a^{3} - \frac{9}{26} a$, $\frac{1}{1149642000} a^{12} - \frac{1}{3381300} a^{10} - \frac{1}{135252} a^{8} + \frac{19}{9945} a^{6} - \frac{551}{159120} a^{4} + \frac{1}{52} a^{2} - \frac{5}{13}$, $\frac{1}{6897852000} a^{13} - \frac{1}{20287800} a^{11} - \frac{181}{20287800} a^{9} + \frac{29}{29835} a^{7} - \frac{551}{954720} a^{5} + \frac{367}{936} a^{3} - \frac{31}{78} a$, $\frac{1}{93000282899083560000} a^{14} + \frac{71720851}{357693395765706000} a^{12} + \frac{14238789751}{54706048764166800} a^{10} - \frac{14077549019}{976893727931550} a^{8} + \frac{1396593012197}{2574402294784320} a^{6} - \frac{208404093109}{42906704913072} a^{4} + \frac{7046053617}{26964998060} a^{2} - \frac{736091695}{17527248739}$, $\frac{1}{558001697394501360000} a^{15} + \frac{71720851}{2146160374594236000} a^{13} - \frac{34298206757}{328236292585000800} a^{11} - \frac{4895666797}{1172272473517860} a^{9} + \frac{26247535224293}{15446413768705920} a^{7} + \frac{2776223259751}{1287201147392160} a^{5} + \frac{2043717653}{6741249515} a^{3} + \frac{23226327455}{52581746217} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{580}\times C_{7540}$, which has order $139942400$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5997651.461690898 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.1 | $x^{8} + 14 x^{4} + 4 x^{2} + 8 x + 22$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.1 | $x^{8} + 14 x^{4} + 4 x^{2} + 8 x + 22$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |