Normalized defining polynomial
\( x^{16} + 328 x^{14} + 39116 x^{12} + 2154304 x^{10} + 64573714 x^{8} + 1108555112 x^{6} + 10689323324 x^{4} + 57170356256 x^{2} + 244628170801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(262686006513622818702917369856000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $387.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4080=2^{4}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4080}(1,·)$, $\chi_{4080}(2053,·)$, $\chi_{4080}(2891,·)$, $\chi_{4080}(13,·)$, $\chi_{4080}(851,·)$, $\chi_{4080}(2197,·)$, $\chi_{4080}(2903,·)$, $\chi_{4080}(157,·)$, $\chi_{4080}(863,·)$, $\chi_{4080}(2209,·)$, $\chi_{4080}(3047,·)$, $\chi_{4080}(169,·)$, $\chi_{4080}(1007,·)$, $\chi_{4080}(3059,·)$, $\chi_{4080}(2041,·)$, $\chi_{4080}(1019,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{84} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{2}{21} a^{2} - \frac{5}{12}$, $\frac{1}{84} a^{9} - \frac{1}{21} a^{7} - \frac{1}{3} a^{5} - \frac{2}{21} a^{3} + \frac{25}{84} a$, $\frac{1}{84} a^{10} + \frac{1}{3} a^{6} - \frac{3}{7} a^{4} - \frac{1}{12} a^{2} + \frac{1}{3}$, $\frac{1}{84} a^{11} + \frac{1}{21} a^{7} - \frac{3}{7} a^{5} - \frac{1}{12} a^{3} - \frac{8}{21} a$, $\frac{1}{295092} a^{12} - \frac{93}{32788} a^{10} - \frac{271}{49182} a^{8} - \frac{2606}{73773} a^{6} - \frac{6907}{32788} a^{4} - \frac{24035}{98364} a^{2} + \frac{3403}{21078}$, $\frac{1}{20850315444} a^{13} - \frac{21157907}{6950105148} a^{11} + \frac{1994663}{1737526287} a^{9} + \frac{112480141}{5212578861} a^{7} + \frac{2579781275}{6950105148} a^{5} - \frac{3022384403}{6950105148} a^{3} + \frac{693954122}{5212578861} a$, $\frac{1}{458740177353641575847656908} a^{14} - \frac{8118115896095105891}{7281590116724469457899316} a^{12} + \frac{19346392429674979516991}{3640795058362234728949658} a^{10} + \frac{1960274046650992986217771}{458740177353641575847656908} a^{8} - \frac{10080136527427269584271587}{21844770350173408373697948} a^{6} + \frac{3237548556631320449688605}{7281590116724469457899316} a^{4} + \frac{61962310384155367416956359}{229370088676820787923828454} a^{2} - \frac{3725722552253286253}{14722209540909847084}$, $\frac{1}{458740177353641575847656908} a^{15} + \frac{1107871948125827}{65534311050520225121093844} a^{13} + \frac{760572030510969854166}{1820397529181117364474829} a^{11} - \frac{11393220635917322774651}{458740177353641575847656908} a^{9} - \frac{2348974139279887313011717}{65534311050520225121093844} a^{7} - \frac{1362699754640078886947203}{21844770350173408373697948} a^{5} + \frac{57200540901869155676742446}{114685044338410393961914227} a^{3} - \frac{9197386006814462581843025}{65534311050520225121093844} a$
Class group and class number
$C_{2}\times C_{2}\times C_{8}\times C_{8}\times C_{40}\times C_{19720}$, which has order $201932800$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6814399.346097333 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| $17$ | 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |