Normalized defining polynomial
\( x^{16} + 488 x^{14} + 71756 x^{12} + 2873344 x^{10} + 14583259 x^{8} - 687937848 x^{6} + 3865158504 x^{4} - 409240944 x^{2} + 89663714721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(262686006513622818702917369856000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $387.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4080=2^{4}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4080}(1,·)$, $\chi_{4080}(2821,·)$, $\chi_{4080}(781,·)$, $\chi_{4080}(3469,·)$, $\chi_{4080}(3107,·)$, $\chi_{4080}(1429,·)$, $\chi_{4080}(2903,·)$, $\chi_{4080}(2843,·)$, $\chi_{4080}(863,·)$, $\chi_{4080}(2209,·)$, $\chi_{4080}(803,·)$, $\chi_{4080}(3047,·)$, $\chi_{4080}(169,·)$, $\chi_{4080}(1067,·)$, $\chi_{4080}(1007,·)$, $\chi_{4080}(2041,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{7} a^{5} + \frac{1}{7} a^{3} + \frac{1}{7} a$, $\frac{1}{7} a^{6} + \frac{1}{7} a^{4} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{147} a^{10} + \frac{2}{147} a^{8} - \frac{4}{147} a^{6} - \frac{5}{147} a^{4} + \frac{43}{147} a^{2}$, $\frac{1}{147} a^{11} + \frac{2}{147} a^{9} - \frac{4}{147} a^{7} - \frac{5}{147} a^{5} + \frac{43}{147} a^{3}$, $\frac{1}{122157} a^{12} - \frac{130}{122157} a^{10} - \frac{4090}{122157} a^{8} + \frac{4807}{122157} a^{6} + \frac{59377}{122157} a^{4} - \frac{3061}{40719} a^{2} + \frac{60}{277}$, $\frac{1}{1741836663} a^{13} - \frac{3580}{248833809} a^{11} - \frac{16963969}{1741836663} a^{9} + \frac{24780241}{1741836663} a^{7} + \frac{403630}{17957079} a^{5} + \frac{21686039}{580612221} a^{3} - \frac{118219}{3949743} a$, $\frac{1}{12243135909242409821005601637441} a^{14} - \frac{968073466248122845944973}{1749019415606058545857943091063} a^{12} - \frac{21228345633681173223463425010}{12243135909242409821005601637441} a^{10} - \frac{343139508448424834607554886020}{12243135909242409821005601637441} a^{8} - \frac{3209325305353825908145588235}{126217895971571235268098985953} a^{6} + \frac{40882405473601063450065441295}{453449478120089252629837097683} a^{4} + \frac{6045392976725517422442542510}{27762212946127913426316557001} a^{2} - \frac{525212188712787816671306}{1946995788353174375925139}$, $\frac{1}{36729407727727229463016804912323} a^{15} - \frac{7716631303260917947270}{36729407727727229463016804912323} a^{13} - \frac{24281136625699683697472660464}{36729407727727229463016804912323} a^{11} + \frac{335519241233437806049054152712}{5247058246818175637573829273189} a^{9} + \frac{597994464032046916415236779577}{36729407727727229463016804912323} a^{7} - \frac{63031459993074641395901219459}{4081045303080803273668533879147} a^{5} + \frac{2020677989814285859117911215656}{4081045303080803273668533879147} a^{3} - \frac{2183780963563069644356178949}{27762212946127913426316557001} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{20}\times C_{120}\times C_{6960}$, which has order $267264000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6183243.81077213 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| $17$ | 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |