Properties

Label 16.0.26268600651...00.104
Degree $16$
Signature $[0, 8]$
Discriminant $2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 17^{12}$
Root discriminant $387.90$
Ramified primes $2, 3, 5, 17$
Class number $414720000$ (GRH)
Class group $[2, 4, 60, 60, 120, 120]$ (GRH)
Galois group $C_4^2$ (as 16T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8022993935121, 0, 8539740283104, 0, 1241503524972, 0, 71545582152, 0, 2042084115, 0, 30712608, 0, 236232, 0, 816, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 816*x^14 + 236232*x^12 + 30712608*x^10 + 2042084115*x^8 + 71545582152*x^6 + 1241503524972*x^4 + 8539740283104*x^2 + 8022993935121)
 
gp: K = bnfinit(x^16 + 816*x^14 + 236232*x^12 + 30712608*x^10 + 2042084115*x^8 + 71545582152*x^6 + 1241503524972*x^4 + 8539740283104*x^2 + 8022993935121, 1)
 

Normalized defining polynomial

\( x^{16} + 816 x^{14} + 236232 x^{12} + 30712608 x^{10} + 2042084115 x^{8} + 71545582152 x^{6} + 1241503524972 x^{4} + 8539740283104 x^{2} + 8022993935121 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(262686006513622818702917369856000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 17^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $387.90$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4080=2^{4}\cdot 3\cdot 5\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{4080}(1,·)$, $\chi_{4080}(1067,·)$, $\chi_{4080}(1801,·)$, $\chi_{4080}(2189,·)$, $\chi_{4080}(2449,·)$, $\chi_{4080}(4067,·)$, $\chi_{4080}(1109,·)$, $\chi_{4080}(1883,·)$, $\chi_{4080}(803,·)$, $\chi_{4080}(3367,·)$, $\chi_{4080}(169,·)$, $\chi_{4080}(103,·)$, $\chi_{4080}(3821,·)$, $\chi_{4080}(1903,·)$, $\chi_{4080}(2741,·)$, $\chi_{4080}(1087,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{153} a^{4}$, $\frac{1}{153} a^{5}$, $\frac{1}{459} a^{6}$, $\frac{1}{459} a^{7}$, $\frac{1}{117045} a^{8} - \frac{2}{2295} a^{6} - \frac{2}{765} a^{4} - \frac{1}{15} a^{2} - \frac{1}{5}$, $\frac{1}{1287495} a^{9} - \frac{1}{935} a^{7} + \frac{2}{935} a^{5} + \frac{3}{55} a^{3} - \frac{6}{55} a$, $\frac{1}{3862485} a^{10} + \frac{1}{429165} a^{8} - \frac{26}{25245} a^{6} - \frac{1}{8415} a^{4} + \frac{9}{55} a^{2} - \frac{2}{5}$, $\frac{1}{42487335} a^{11} - \frac{1}{14162445} a^{9} + \frac{1}{10285} a^{7} + \frac{49}{30855} a^{5} - \frac{64}{1815} a^{3} + \frac{167}{605} a$, $\frac{1}{32502811275} a^{12} + \frac{14}{212436675} a^{10} + \frac{89}{42487335} a^{8} - \frac{533}{833085} a^{6} - \frac{686}{277695} a^{4} + \frac{818}{27225} a^{2} - \frac{8}{75}$, $\frac{1}{32502811275} a^{13} - \frac{1}{212436675} a^{11} - \frac{1}{42487335} a^{9} + \frac{82}{833085} a^{7} - \frac{161}{277695} a^{5} - \frac{757}{27225} a^{3} + \frac{3562}{9075} a$, $\frac{1}{91774450373920875} a^{14} + \frac{41161}{10197161152657875} a^{12} - \frac{7968182}{599833008979875} a^{10} + \frac{641021}{470457261945} a^{8} - \frac{29226952}{27037773675} a^{6} - \frac{2738554964}{1306825727625} a^{4} + \frac{195581224}{25624033875} a^{2} - \frac{11206559}{23529875}$, $\frac{1}{91774450373920875} a^{15} + \frac{41161}{10197161152657875} a^{13} + \frac{6149743}{599833008979875} a^{11} - \frac{2091134}{7997773453065} a^{9} - \frac{27669112}{27037773675} a^{7} + \frac{2287426336}{1306825727625} a^{5} - \frac{3503315126}{25624033875} a^{3} + \frac{51092886}{2847114875} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{60}\times C_{60}\times C_{120}\times C_{120}$, which has order $414720000$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1671686.3034391652 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4^2$ (as 16T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4^2$
Character table for $C_4^2$

Intermediate fields

\(\Q(\sqrt{170}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{5}) \), 4.0.11319552000.2, \(\Q(\sqrt{5}, \sqrt{34})\), 4.0.11319552000.7, 4.0.90556416.3, 4.0.2263910400.15, 4.4.8000.1, 4.4.578000.1, 8.0.128132257480704000000.37, 8.0.5125290299228160000.12, 8.8.85525504000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
17Data not computed