Normalized defining polynomial
\( x^{16} - 4 x^{15} + 222 x^{14} - 768 x^{13} + 21077 x^{12} - 61080 x^{11} + 1076678 x^{10} - 2552476 x^{9} + 31197750 x^{8} - 58332164 x^{7} + 539585678 x^{6} - 703589400 x^{5} + 6577657217 x^{4} - 4555750032 x^{3} + 48974600382 x^{2} - 12798160796 x + 157013824831 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26268600651362281870291736985600000000=2^{44}\cdot 3^{8}\cdot 5^{8}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $218.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4080=2^{4}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4080}(1,·)$, $\chi_{4080}(3841,·)$, $\chi_{4080}(1801,·)$, $\chi_{4080}(2189,·)$, $\chi_{4080}(3149,·)$, $\chi_{4080}(1441,·)$, $\chi_{4080}(149,·)$, $\chi_{4080}(3481,·)$, $\chi_{4080}(2401,·)$, $\chi_{4080}(2789,·)$, $\chi_{4080}(361,·)$, $\chi_{4080}(749,·)$, $\chi_{4080}(2549,·)$, $\chi_{4080}(2041,·)$, $\chi_{4080}(509,·)$, $\chi_{4080}(1109,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{15} a^{8} - \frac{2}{15} a^{7} + \frac{4}{15} a^{6} - \frac{1}{15} a^{5} + \frac{2}{5} a^{4} + \frac{1}{15} a^{3} + \frac{4}{15} a^{2} + \frac{2}{15} a + \frac{1}{15}$, $\frac{1}{15} a^{9} + \frac{7}{15} a^{6} + \frac{4}{15} a^{5} - \frac{2}{15} a^{4} + \frac{2}{5} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{2}{15}$, $\frac{1}{15} a^{10} + \frac{7}{15} a^{7} + \frac{4}{15} a^{6} - \frac{2}{15} a^{5} + \frac{2}{5} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{2}{15} a$, $\frac{1}{15} a^{11} + \frac{1}{5} a^{7} - \frac{2}{15} a^{5} - \frac{2}{15} a^{4} - \frac{2}{15} a^{3} + \frac{4}{15} a^{2} + \frac{1}{15} a - \frac{7}{15}$, $\frac{1}{120} a^{12} - \frac{1}{30} a^{10} - \frac{1}{30} a^{9} - \frac{1}{60} a^{8} - \frac{2}{5} a^{7} + \frac{9}{20} a^{6} + \frac{1}{3} a^{5} - \frac{2}{5} a^{4} - \frac{1}{6} a^{3} - \frac{1}{30} a^{2} + \frac{17}{120}$, $\frac{1}{120} a^{13} - \frac{1}{30} a^{11} - \frac{1}{30} a^{10} - \frac{1}{60} a^{9} - \frac{7}{20} a^{7} - \frac{1}{15} a^{6} + \frac{1}{5} a^{5} + \frac{7}{30} a^{4} + \frac{11}{30} a^{3} - \frac{2}{5} a^{2} - \frac{7}{120} a + \frac{2}{5}$, $\frac{1}{13741287954601070021520} a^{14} + \frac{5730568813671036499}{6870643977300535010760} a^{13} - \frac{211629689220154403}{916085863640071334768} a^{12} + \frac{45600598693600703581}{3435321988650267505380} a^{11} - \frac{49525026909235840881}{2290214659100178336920} a^{10} + \frac{6477338261330170029}{286276832387522292115} a^{9} + \frac{20986031212192276739}{1717660994325133752690} a^{8} + \frac{395354986846805874489}{1145107329550089168460} a^{7} - \frac{192944054507729136437}{2290214659100178336920} a^{6} - \frac{679792800205172551061}{3435321988650267505380} a^{5} + \frac{456689907027068546101}{3435321988650267505380} a^{4} - \frac{278925769219655326985}{687064397730053501076} a^{3} - \frac{1279679497725640477459}{13741287954601070021520} a^{2} - \frac{1735418588355707717533}{6870643977300535010760} a - \frac{6146495902861947565753}{13741287954601070021520}$, $\frac{1}{511932385444372283247532862392596450254836080} a^{15} + \frac{9565113724916835010607}{511932385444372283247532862392596450254836080} a^{14} - \frac{354092087224015054116511091870778116997809}{511932385444372283247532862392596450254836080} a^{13} + \frac{14399268455632117250795760071378626342823}{34128825696291485549835524159506430016989072} a^{12} - \frac{7459478552207985498730348589395345827288733}{255966192722186141623766431196298225127418040} a^{11} - \frac{7354482624217272805187617414256802105453811}{255966192722186141623766431196298225127418040} a^{10} + \frac{4218562659067051895104936077082269529963441}{127983096361093070811883215598149112563709020} a^{9} - \frac{558396282501570175344822921942051674555189}{31995774090273267702970803899537278140927255} a^{8} + \frac{3262663170485379299220280676590588624621431}{17064412848145742774917762079753215008494536} a^{7} - \frac{7205383791088102424332556590588273929211}{134365455497210573030848520313017441011768} a^{6} - \frac{940768737443947201093976096079662826084874}{31995774090273267702970803899537278140927255} a^{5} + \frac{1862570217017911872254336955577190582647167}{4266103212036435693729440519938303752123634} a^{4} - \frac{47213739462236440332656504464476426313238459}{102386477088874456649506572478519290050967216} a^{3} + \frac{16746240065878862528504034467747038694107949}{34128825696291485549835524159506430016989072} a^{2} - \frac{197451976355582776498195086028254496921057981}{511932385444372283247532862392596450254836080} a + \frac{27086293509465265473595507082428279263107747}{170644128481457427749177620797532150084945360}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{20}\times C_{120}\times C_{120}$, which has order $18432000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103646.40189541418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |