Normalized defining polynomial
\( x^{16} - 5 x^{15} + 842 x^{14} + 28801 x^{13} + 657498 x^{12} + 7456671 x^{11} + 818111467 x^{10} - 3212165856 x^{9} + 356585283872 x^{8} - 4376626157712 x^{7} + 171426115905879 x^{6} - 1827680235740115 x^{5} + 32436664122096987 x^{4} - 268920195666810337 x^{3} + 2883739495205635060 x^{2} - 14238289298038957907 x + 42985739425875246071 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26255811630589850827051927649928110197766220114319683841=61^{14}\cdot 149^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2908.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{1275894581371252749824519641176879926458881309545791417107845640362503866247464831451875525728763944527136580013821610130625963100901091655} a^{15} + \frac{36553528639079406385407341259494386201435368781710670016988091373195901730355080064458418029929213286940360773883002634210172310405894062}{1275894581371252749824519641176879926458881309545791417107845640362503866247464831451875525728763944527136580013821610130625963100901091655} a^{14} + \frac{3670374841441375350577943796471997314964194684020226952561986791545858521461818523856894099301424625950445255151183584375723432431728172}{67152346387960671043395770588256838234677963660304811426728717913815992960392885865888185564671786554059820000727453164769787531626373245} a^{13} + \frac{75941282088507925531294549871333544327575495664573461603554738472057292458453693251821729214895334716240192764343873148913146069688917293}{1275894581371252749824519641176879926458881309545791417107845640362503866247464831451875525728763944527136580013821610130625963100901091655} a^{12} + \frac{597706276529415881164298881149212687604409564767366116522972512305206637050235936329163469537938606663141429819656075153825059427242901094}{1275894581371252749824519641176879926458881309545791417107845640362503866247464831451875525728763944527136580013821610130625963100901091655} a^{11} - \frac{535907708924310552529470724028346843188786130733657797646817332450271512353423741341358867366745131196102624925938214454185719899375620891}{1275894581371252749824519641176879926458881309545791417107845640362503866247464831451875525728763944527136580013821610130625963100901091655} a^{10} + \frac{123514407625757189688888681002345388242182614802912392267984660154807462083854215965940037903274600334134891971628017651534734889289442557}{255178916274250549964903928235375985291776261909158283421569128072500773249492966290375105145752788905427316002764322026125192620180218331} a^{9} + \frac{450498144340134194976687852803814709514635161986940933144461580118725278151567011811957876683100301268908151643678218249814072190584065266}{1275894581371252749824519641176879926458881309545791417107845640362503866247464831451875525728763944527136580013821610130625963100901091655} a^{8} + \frac{30720719976462506468359402663175284998315036389313717912302247461025438431215888674771366649479906655576037583749094122356098560108792492}{255178916274250549964903928235375985291776261909158283421569128072500773249492966290375105145752788905427316002764322026125192620180218331} a^{7} + \frac{33503260151445910757999415699742432823572039027821282183633477329774961411717779402036982373045115342160319339823245983362995783136977009}{67152346387960671043395770588256838234677963660304811426728717913815992960392885865888185564671786554059820000727453164769787531626373245} a^{6} + \frac{19590494693174789148907213659077089095856043858630992057825521882266678892971968438525149700503515871574986188965769385272583911449845553}{67152346387960671043395770588256838234677963660304811426728717913815992960392885865888185564671786554059820000727453164769787531626373245} a^{5} + \frac{10767577452602756771500664765278916604468383211244909930137868207685858488338924396799467332216668150591459562116644741642004571572614951}{255178916274250549964903928235375985291776261909158283421569128072500773249492966290375105145752788905427316002764322026125192620180218331} a^{4} + \frac{424019246421103338034048676627340886992287003512512737744904134054882298210017479640313391730059708622225669218586150589120526851423090987}{1275894581371252749824519641176879926458881309545791417107845640362503866247464831451875525728763944527136580013821610130625963100901091655} a^{3} + \frac{66249217630335987983109384264384209112444121410866145792660848106691010854188080462217164766265485292580203988827752081667119775605464877}{1275894581371252749824519641176879926458881309545791417107845640362503866247464831451875525728763944527136580013821610130625963100901091655} a^{2} - \frac{74850375863793630127158406024465958602618089880103982758293411390199158733005349358235263853914781952196686219471796718675522260018398603}{1275894581371252749824519641176879926458881309545791417107845640362503866247464831451875525728763944527136580013821610130625963100901091655} a + \frac{86934918195181861084552535035165449416487724258292876710794604007327119834733961185638527732858521946012835410972734924638287023897546206}{255178916274250549964903928235375985291776261909158283421569128072500773249492966290375105145752788905427316002764322026125192620180218331}$
Class group and class number
$C_{2}\times C_{2}\times C_{2028971972}$, which has order $8115887888$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103227707426 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{9089}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{149}) \), \(\Q(\sqrt{61}, \sqrt{149})\), 8.8.563763066196879006536961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $149$ | 149.8.7.2 | $x^{8} - 596$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 149.8.7.2 | $x^{8} - 596$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |