Normalized defining polynomial
\( x^{16} + 57 x^{14} - 334 x^{13} + 2319 x^{12} - 13622 x^{11} + 104686 x^{10} - 518319 x^{9} + 2090613 x^{8} - 11794245 x^{7} + 51922689 x^{6} - 174630340 x^{5} + 510117913 x^{4} - 1506235284 x^{3} + 4103046553 x^{2} - 6992958031 x + 6194357651 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26252865470156848284984700456389559681=13^{12}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $218.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{1716} a^{12} + \frac{115}{572} a^{11} + \frac{43}{858} a^{10} + \frac{5}{286} a^{9} - \frac{49}{286} a^{8} - \frac{135}{572} a^{7} - \frac{673}{1716} a^{6} - \frac{7}{22} a^{5} + \frac{799}{1716} a^{4} + \frac{353}{1716} a^{3} + \frac{137}{572} a^{2} - \frac{19}{156} a - \frac{337}{1716}$, $\frac{1}{1716} a^{13} + \frac{323}{1716} a^{11} + \frac{5}{22} a^{10} - \frac{29}{143} a^{9} - \frac{73}{572} a^{8} - \frac{401}{858} a^{7} + \frac{279}{572} a^{6} - \frac{449}{1716} a^{5} - \frac{371}{858} a^{4} + \frac{7}{26} a^{3} - \frac{217}{858} a^{2} - \frac{76}{429} a - \frac{141}{572}$, $\frac{1}{1716} a^{14} - \frac{11}{52} a^{11} + \frac{47}{429} a^{10} + \frac{129}{572} a^{9} - \frac{5}{39} a^{8} + \frac{63}{286} a^{7} - \frac{12}{143} a^{6} - \frac{137}{858} a^{5} - \frac{215}{1716} a^{4} + \frac{173}{572} a^{3} - \frac{67}{1716} a^{2} + \frac{40}{429} a + \frac{743}{1716}$, $\frac{1}{1024419894768838833067546270052623069054908815383195931844} a^{15} - \frac{75763534682395839006876504070845363421346377366062689}{341473298256279611022515423350874356351636271794398643948} a^{14} - \frac{297938926154959453432347070085739881606298226934556431}{1024419894768838833067546270052623069054908815383195931844} a^{13} + \frac{899373480928672500771675074118757985788083670651607}{93129081342621712097049660913874824459537165034835993804} a^{12} - \frac{106995321117931185426893963059175244763261183077259633555}{512209947384419416533773135026311534527454407691597965922} a^{11} + \frac{37422150038775234723224931332030802493996016992689142601}{1024419894768838833067546270052623069054908815383195931844} a^{10} - \frac{114528270160405521420135170480897867119227266412695212447}{1024419894768838833067546270052623069054908815383195931844} a^{9} - \frac{30454705399052618096049124411089684171226327531650773285}{341473298256279611022515423350874356351636271794398643948} a^{8} - \frac{14048386547344054273243475734146620104115194215347623853}{39400765183416878194905625771254733425188800591661381994} a^{7} - \frac{498838885513976010935434902830056455449245709562152064737}{1024419894768838833067546270052623069054908815383195931844} a^{6} - \frac{20472637316749316187003365364813466384974022137186177857}{512209947384419416533773135026311534527454407691597965922} a^{5} + \frac{8132528540893257711766321283296011084256990603146858937}{170736649128139805511257711675437178175818135897199321974} a^{4} - \frac{244292409438286526695965035745271755738220954912132206631}{512209947384419416533773135026311534527454407691597965922} a^{3} - \frac{162246474923720584873657014933018875810592116031816552985}{1024419894768838833067546270052623069054908815383195931844} a^{2} - \frac{287297167500256771563309579547781994741410287418874026161}{1024419894768838833067546270052623069054908815383195931844} a + \frac{1838598700782046167669999767360103551217875377292030087}{4787008854059994547044608738563659201191162688706523046}$
Class group and class number
$C_{26}\times C_{260}$, which has order $6760$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 151720134.33 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.8.6.1 | $x^{8} - 707 x^{4} + 826281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 101.8.6.1 | $x^{8} - 707 x^{4} + 826281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |