Normalized defining polynomial
\( x^{16} - 4 x^{15} + 141 x^{14} - 476 x^{13} + 7718 x^{12} - 21126 x^{11} + 204969 x^{10} - 440625 x^{9} + 2836720 x^{8} - 4701297 x^{7} + 19646115 x^{6} - 24590405 x^{5} + 54351103 x^{4} - 58934929 x^{3} - 17975866 x^{2} - 15162339 x + 71134267 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26252865470156848284984700456389559681=13^{12}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $218.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{14020260} a^{12} - \frac{1}{4673420} a^{11} - \frac{2453173}{14020260} a^{10} + \frac{1869859}{14020260} a^{9} - \frac{230743}{1168355} a^{8} + \frac{1775347}{14020260} a^{7} - \frac{49765}{233671} a^{6} - \frac{5112311}{14020260} a^{5} - \frac{200075}{467342} a^{4} - \frac{4872143}{14020260} a^{3} + \frac{193157}{14020260} a^{2} + \frac{1143214}{3505065} a + \frac{5017}{77460}$, $\frac{1}{14020260} a^{13} - \frac{1226591}{7010130} a^{11} + \frac{152047}{1402026} a^{10} + \frac{946887}{4673420} a^{9} + \frac{478729}{14020260} a^{8} + \frac{780047}{4673420} a^{7} + \frac{6960379}{14020260} a^{6} + \frac{2233779}{4673420} a^{5} + \frac{5161627}{14020260} a^{4} + \frac{3303559}{7010130} a^{3} + \frac{5152327}{14020260} a^{2} - \frac{1280749}{2804052} a - \frac{7893}{25820}$, $\frac{1}{14020260} a^{14} + \frac{585527}{7010130} a^{11} + \frac{85393}{2804052} a^{10} - \frac{1685953}{14020260} a^{9} + \frac{728813}{4673420} a^{8} - \frac{4311997}{14020260} a^{7} - \frac{501431}{4673420} a^{6} - \frac{31277}{2804052} a^{5} - \frac{560158}{3505065} a^{4} - \frac{4747219}{14020260} a^{3} + \frac{48203}{4673420} a^{2} + \frac{6097963}{14020260} a + \frac{8356}{19365}$, $\frac{1}{6042495953327112237692276657675226660} a^{15} - \frac{31991508735295514239000883132}{1510623988331778059423069164418806665} a^{14} + \frac{10958993618958542689590759684}{503541329443926019807689721472935555} a^{13} - \frac{3054797558059243009950565817}{3021247976663556118846138328837613330} a^{12} + \frac{137264514525006237214379813386807177}{2014165317775704079230758885891742220} a^{11} - \frac{399078355833204461383579453446632263}{2014165317775704079230758885891742220} a^{10} - \frac{226151418709619923839354928999513127}{2014165317775704079230758885891742220} a^{9} - \frac{1245758517462109050193929189557050579}{6042495953327112237692276657675226660} a^{8} - \frac{139467904709975280961537315045973773}{402833063555140815846151777178348444} a^{7} + \frac{1591690571065401527689262373910997171}{6042495953327112237692276657675226660} a^{6} + \frac{697904006522964492180058218923902441}{3021247976663556118846138328837613330} a^{5} + \frac{86409531612415398609566329578764533}{6042495953327112237692276657675226660} a^{4} - \frac{15642577995848302325776095526332351}{118480312810335534072397581523043660} a^{3} - \frac{648962637201182551692761562297301533}{2014165317775704079230758885891742220} a^{2} + \frac{356018052294042833490367360908076667}{1007082658887852039615379442945871110} a + \frac{1084476337903501235896760674621337}{3338395554324371402039931855069186}$
Class group and class number
$C_{5}\times C_{5}\times C_{10}\times C_{20}$, which has order $5000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 151720134.33 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $101$ | 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |