Properties

Label 16.0.26064766458...0000.3
Degree $16$
Signature $[0, 8]$
Discriminant $2^{44}\cdot 5^{8}\cdot 41^{14}$
Root discriminant $387.71$
Ramified primes $2, 5, 41$
Class number $230834176$ (GRH)
Class group $[2, 2, 4, 4, 4, 8, 112712]$ (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2689600000000, 0, 3765440000000, 0, 921188000000, 0, 67912400000, 0, 2178022500, 0, 33333000, 0, 243950, 0, 820, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 820*x^14 + 243950*x^12 + 33333000*x^10 + 2178022500*x^8 + 67912400000*x^6 + 921188000000*x^4 + 3765440000000*x^2 + 2689600000000)
 
gp: K = bnfinit(x^16 + 820*x^14 + 243950*x^12 + 33333000*x^10 + 2178022500*x^8 + 67912400000*x^6 + 921188000000*x^4 + 3765440000000*x^2 + 2689600000000, 1)
 

Normalized defining polynomial

\( x^{16} + 820 x^{14} + 243950 x^{12} + 33333000 x^{10} + 2178022500 x^{8} + 67912400000 x^{6} + 921188000000 x^{4} + 3765440000000 x^{2} + 2689600000000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(260647664583545828058954286602649600000000=2^{44}\cdot 5^{8}\cdot 41^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $387.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3280=2^{4}\cdot 5\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{3280}(1,·)$, $\chi_{3280}(2949,·)$, $\chi_{3280}(1069,·)$, $\chi_{3280}(81,·)$, $\chi_{3280}(2709,·)$, $\chi_{3280}(1721,·)$, $\chi_{3280}(2269,·)$, $\chi_{3280}(2961,·)$, $\chi_{3280}(401,·)$, $\chi_{3280}(1321,·)$, $\chi_{3280}(109,·)$, $\chi_{3280}(1309,·)$, $\chi_{3280}(629,·)$, $\chi_{3280}(1641,·)$, $\chi_{3280}(2041,·)$, $\chi_{3280}(1749,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{50} a^{4}$, $\frac{1}{50} a^{5}$, $\frac{1}{250} a^{6}$, $\frac{1}{250} a^{7}$, $\frac{1}{102500} a^{8}$, $\frac{1}{205000} a^{9} - \frac{1}{100} a^{5} - \frac{1}{2} a$, $\frac{1}{47150000} a^{10} + \frac{2}{589375} a^{8} - \frac{29}{23000} a^{6} + \frac{1}{230} a^{4} - \frac{19}{460} a^{2} + \frac{10}{23}$, $\frac{1}{94300000} a^{11} + \frac{1}{589375} a^{9} + \frac{63}{46000} a^{7} - \frac{9}{1150} a^{5} + \frac{73}{920} a^{3} - \frac{13}{46} a$, $\frac{1}{75440000000} a^{12} + \frac{29}{3772000000} a^{10} + \frac{799}{1508800000} a^{8} + \frac{201}{1840000} a^{6} - \frac{5711}{736000} a^{4} + \frac{771}{9200} a^{2} - \frac{79}{920}$, $\frac{1}{150880000000} a^{13} + \frac{29}{7544000000} a^{11} + \frac{799}{3017600000} a^{9} - \frac{7159}{3680000} a^{7} + \frac{9009}{1472000} a^{5} + \frac{771}{18400} a^{3} + \frac{841}{1840} a$, $\frac{1}{381893876800000000} a^{14} + \frac{96489}{19094693840000000} a^{12} - \frac{30056961}{7637877536000000} a^{10} + \frac{952911141}{381893876800000} a^{8} + \frac{1758883729}{3725793920000} a^{6} + \frac{74683363}{23286212000} a^{4} + \frac{183761921}{4657242400} a^{2} - \frac{2596773}{11643106}$, $\frac{1}{763787753600000000} a^{15} + \frac{96489}{38189387680000000} a^{13} - \frac{30056961}{15275755072000000} a^{11} + \frac{952911141}{763787753600000} a^{9} + \frac{1758883729}{7451587840000} a^{7} + \frac{74683363}{46572424000} a^{5} + \frac{183761921}{9314484800} a^{3} + \frac{9046333}{23286212} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{8}\times C_{112712}$, which has order $230834176$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 533954.940478744 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_8$ (as 16T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{82}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{41})\), 4.4.4410944.2, 4.4.68921.1, 8.8.19456426971136.3, 8.0.510536643722608640000.2, 8.0.510536643722608640000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.22.5$x^{8} + 10 x^{4} + 16 x + 36$$4$$2$$22$$C_4\times C_2$$[3, 4]^{2}$
2.8.22.5$x^{8} + 10 x^{4} + 16 x + 36$$4$$2$$22$$C_4\times C_2$$[3, 4]^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$41$41.8.7.1$x^{8} - 41$$8$$1$$7$$C_8$$[\ ]_{8}$
41.8.7.1$x^{8} - 41$$8$$1$$7$$C_8$$[\ ]_{8}$