Normalized defining polynomial
\( x^{16} - 12 x^{14} - 12 x^{13} + 68 x^{12} + 24 x^{11} - 214 x^{10} + 228 x^{9} + 711 x^{8} - 960 x^{7} - 562 x^{6} + 3708 x^{5} - 1128 x^{4} - 5196 x^{3} + 4880 x^{2} - 816 x + 58 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2599167103947239325696=2^{36}\cdot 3^{8}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{35} a^{12} + \frac{13}{35} a^{11} - \frac{8}{35} a^{10} - \frac{3}{7} a^{9} + \frac{2}{7} a^{8} + \frac{13}{35} a^{7} + \frac{8}{35} a^{6} + \frac{12}{35} a^{5} - \frac{8}{35} a^{2} - \frac{13}{35} a - \frac{12}{35}$, $\frac{1}{35} a^{13} - \frac{2}{35} a^{11} - \frac{16}{35} a^{10} - \frac{1}{7} a^{9} - \frac{12}{35} a^{8} + \frac{2}{5} a^{7} + \frac{13}{35} a^{6} - \frac{16}{35} a^{5} - \frac{8}{35} a^{3} - \frac{2}{5} a^{2} + \frac{17}{35} a + \frac{16}{35}$, $\frac{1}{1085} a^{14} + \frac{6}{1085} a^{13} + \frac{9}{1085} a^{12} + \frac{9}{217} a^{11} - \frac{2}{155} a^{10} - \frac{487}{1085} a^{9} - \frac{508}{1085} a^{8} - \frac{64}{217} a^{7} - \frac{26}{217} a^{6} + \frac{456}{1085} a^{5} + \frac{342}{1085} a^{4} + \frac{253}{1085} a^{3} - \frac{80}{217} a^{2} - \frac{40}{217} a + \frac{349}{1085}$, $\frac{1}{32983342810385158370165} a^{15} - \frac{929457650444588081}{6596668562077031674033} a^{14} + \frac{267588587362877129224}{32983342810385158370165} a^{13} + \frac{441949323035177175096}{32983342810385158370165} a^{12} - \frac{11122985901282360897156}{32983342810385158370165} a^{11} - \frac{8066061083046096906114}{32983342810385158370165} a^{10} + \frac{27647463327489131762}{151996971476429301245} a^{9} - \frac{1371097776399778095159}{32983342810385158370165} a^{8} + \frac{9768658508369136601894}{32983342810385158370165} a^{7} + \frac{8204350744262710287834}{32983342810385158370165} a^{6} - \frac{98653012265214260226}{6596668562077031674033} a^{5} + \frac{14060146246719270321796}{32983342810385158370165} a^{4} + \frac{1981763347891196617107}{4711906115769308338595} a^{3} + \frac{11219084531871345527726}{32983342810385158370165} a^{2} - \frac{15894853306492185941784}{32983342810385158370165} a + \frac{16138137615025685458712}{32983342810385158370165}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{15346061088}{3723133478915} a^{15} - \frac{2707912112}{3723133478915} a^{14} + \frac{36381931686}{744626695783} a^{13} + \frac{215341679189}{3723133478915} a^{12} - \frac{197209093332}{744626695783} a^{11} - \frac{510525483579}{3723133478915} a^{10} + \frac{3100231404462}{3723133478915} a^{9} - \frac{607913635498}{744626695783} a^{8} - \frac{11178808724076}{3723133478915} a^{7} + \frac{2523485295491}{744626695783} a^{6} + \frac{9722570264754}{3723133478915} a^{5} - \frac{54659761856027}{3723133478915} a^{4} + \frac{1647865992930}{744626695783} a^{3} + \frac{77015422983596}{3723133478915} a^{2} - \frac{12607902987732}{744626695783} a + \frac{1149830096473}{744626695783} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21961.6900705 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2$ (as 16T23):
| A solvable group of order 32 |
| The 17 conjugacy class representatives for $Q_8 : C_2^2$ |
| Character table for $Q_8 : C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.18.55 | $x^{8} + 2 x^{6} + 4 x^{3} + 10$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.8.18.55 | $x^{8} + 2 x^{6} + 4 x^{3} + 10$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |