Normalized defining polynomial
\( x^{16} - 8 x^{15} + 38 x^{14} - 96 x^{13} + 112 x^{12} - 112 x^{11} + 912 x^{10} - 3884 x^{9} + 6747 x^{8} - 4100 x^{7} - 444 x^{6} - 352 x^{5} + 1900 x^{4} - 372 x^{3} - 250 x^{2} - 260 x + 169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2599167103947239325696=2^{36}\cdot 3^{8}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13} a^{11} - \frac{2}{13} a^{10} - \frac{2}{13} a^{9} - \frac{3}{13} a^{8} - \frac{6}{13} a^{7} + \frac{6}{13} a^{6} + \frac{6}{13} a^{5} - \frac{2}{13} a^{4} - \frac{6}{13} a^{3} + \frac{6}{13} a$, $\frac{1}{273} a^{12} - \frac{8}{273} a^{11} + \frac{12}{91} a^{10} + \frac{74}{273} a^{9} - \frac{22}{91} a^{8} - \frac{7}{39} a^{7} + \frac{5}{39} a^{6} + \frac{53}{273} a^{5} + \frac{58}{273} a^{4} + \frac{127}{273} a^{3} - \frac{1}{39} a^{2} - \frac{12}{91} a - \frac{1}{21}$, $\frac{1}{273} a^{13} - \frac{1}{39} a^{11} + \frac{47}{273} a^{10} - \frac{62}{273} a^{9} - \frac{94}{273} a^{8} + \frac{3}{13} a^{7} - \frac{29}{91} a^{6} + \frac{62}{273} a^{5} + \frac{1}{91} a^{4} + \frac{64}{273} a^{3} - \frac{92}{273} a^{2} + \frac{14}{39} a - \frac{8}{21}$, $\frac{1}{3549} a^{14} - \frac{4}{3549} a^{12} + \frac{2}{3549} a^{11} + \frac{1726}{3549} a^{10} - \frac{1741}{3549} a^{9} - \frac{206}{1183} a^{8} + \frac{419}{1183} a^{7} - \frac{1597}{3549} a^{6} + \frac{12}{1183} a^{5} - \frac{155}{507} a^{4} - \frac{1496}{3549} a^{3} + \frac{89}{507} a^{2} - \frac{110}{273} a + \frac{1}{7}$, $\frac{1}{20821494164289} a^{15} + \frac{437478941}{6940498054763} a^{14} - \frac{6006587402}{6940498054763} a^{13} - \frac{10195224398}{20821494164289} a^{12} - \frac{427621645852}{20821494164289} a^{11} - \frac{187765350239}{1601653397253} a^{10} - \frac{2059463772442}{20821494164289} a^{9} + \frac{357231868355}{20821494164289} a^{8} - \frac{1932728222029}{6940498054763} a^{7} + \frac{1528077098407}{20821494164289} a^{6} + \frac{350812512400}{2974499166327} a^{5} - \frac{1166112235952}{6940498054763} a^{4} - \frac{5764453704019}{20821494164289} a^{3} + \frac{793567995334}{6940498054763} a^{2} - \frac{603946146760}{1601653397253} a + \frac{48346377914}{123204107481}$
Class group and class number
$C_{8}$, which has order $8$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{12928435599776}{2974499166327} a^{15} + \frac{214830345039675}{6940498054763} a^{14} - \frac{410445985986160}{2974499166327} a^{13} + \frac{2055311071139666}{6940498054763} a^{12} - \frac{4727490480817528}{20821494164289} a^{11} + \frac{461224112692790}{1601653397253} a^{10} - \frac{77268113984777698}{20821494164289} a^{9} + \frac{94545115353468761}{6940498054763} a^{8} - \frac{361691627538125138}{20821494164289} a^{7} + \frac{54058373141678924}{20821494164289} a^{6} + \frac{29079131143728944}{6940498054763} a^{5} + \frac{107921574382596974}{20821494164289} a^{4} - \frac{25705816375815034}{6940498054763} a^{3} - \frac{1598888334402803}{991499722109} a^{2} - \frac{172787345974618}{533884465751} a + \frac{103687600652858}{123204107481} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18213.1636607 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times D_4$ (as 16T25):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 \times D_4$ |
| Character table for $C_2^2 \times D_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |