Normalized defining polynomial
\( x^{16} + 1413 x^{14} + 640747 x^{12} + 122467295 x^{10} + 9850573750 x^{8} + 279518044450 x^{6} + 1590760453744 x^{4} + 708784500408 x^{2} + 1082146816 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2598301686999672224815741132125750417700317797810176=2^{30}\cdot 193^{8}\cdot 257^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1634.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 193, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{3084} a^{12} - \frac{643}{3084} a^{10} + \frac{101}{1028} a^{8} - \frac{401}{3084} a^{6} + \frac{203}{514} a^{4} - \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{49344} a^{13} + \frac{899}{49344} a^{11} - \frac{1}{4} a^{10} + \frac{615}{16448} a^{9} + \frac{1141}{49344} a^{7} - \frac{1}{4} a^{6} + \frac{2029}{4112} a^{5} - \frac{1}{2} a^{4} + \frac{5}{96} a^{3} - \frac{1}{2} a^{2} - \frac{17}{48} a$, $\frac{1}{129350059003195208281875876906314798892790656} a^{14} + \frac{9230067908733618995189222679201238117715}{129350059003195208281875876906314798892790656} a^{12} + \frac{2834861377113741446452233523830155619222183}{43116686334398402760625292302104932964263552} a^{10} - \frac{732574084812683906059185717347457857173777}{11759096273017746207443261536937708990253696} a^{8} + \frac{1408834906868355863636909693986572520424405}{10779171583599600690156323075526233241065888} a^{6} + \frac{30541666190163878815609818428734368695130133}{64675029501597604140937938453157399446395328} a^{4} + \frac{34364991085388284983871401867031056400015}{125826905645131525566027117613146691529952} a^{2} + \frac{311636635636233251916176726714247869726}{1310696933803453391312782475136944703437}$, $\frac{1}{258700118006390416563751753812629597785581312} a^{15} + \frac{1365886305912898647312527828379569897093}{258700118006390416563751753812629597785581312} a^{13} - \frac{10300943293464468441284472441992304198623431}{86233372668796805521250584604209865928527104} a^{11} - \frac{1}{4} a^{10} + \frac{3827936319223077466586763051142671377312381}{23518192546035492414886523073875417980507392} a^{9} + \frac{17490921987666372443020419197131240995826025}{43116686334398402760625292302104932964263552} a^{7} - \frac{1}{4} a^{6} - \frac{521851140977966558503126232011220776326767}{129350059003195208281875876906314798892790656} a^{5} - \frac{1}{2} a^{4} + \frac{19404497475225561724298305886637557903359}{62913452822565762783013558806573345764976} a^{3} - \frac{1}{2} a^{2} - \frac{14674267836872068839032909499626204635939}{41942301881710508522009039204382230509984} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{12}\times C_{32390040}$, which has order $49751101440$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22245061053.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{257}) \), \(\Q(\sqrt{193}) \), \(\Q(\sqrt{49601}) \), 4.4.19682073608.1, 4.4.528392.1, \(\Q(\sqrt{193}, \sqrt{257})\), 8.8.387384021510730137664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.11.15 | $x^{4} + 30$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
| 2.4.10.2 | $x^{4} + 2 x^{2} - 1$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 193 | Data not computed | ||||||
| 257 | Data not computed | ||||||